
- •3) Кислотно-основное титрование. Сущность метода и его возможности. Интервал перехода окраски кислотно-основных индикаторов. Кривые титрования
- •§ 11. Характеристика метода
- •Определение ионов хлора в техническом хлориде натрия по методу Мора
- •Характеристика метода
- •Закон Гесса
- •Следствия из закона Гесса
- •Равновесие химическое
- •Содержание
- •12) Закон действующих масс
Определение ионов хлора в техническом хлориде натрия по методу Мора
Определение ионов хлора в растворимых хлоридах основано на прямом титровании навески анализируемого вещества или его раствора стандартным раствором в присутствии индикатора — хромата калия:
Рассчитанную навеску технического хлорида натрия или его раствор переносят в мерную колбу, доводят объем водой до метки и тщательно перемешивают. Отбирают пипеткой полученного раствора и титруют в присутствии так же, как описано при установке титра .
Если исходят из кристаллического продукта, то вычисляют процентное содержание или -ионов в пробе. Если для анализа дан раствор , то рассчитывают содержание в нем -ионов или в граммах (см. гл. 1, § 10).
Характеристика метода
Роданометрический метод (метод Фольгарда) объемного анализа основан на применении в качестве осадителя титрованного раствора, содержащего :
Более подробно — см. § 2.
В качестве стандартных растворов используют: для определения — роданид аммония; для определения галогенидов и других анионов — нитрат серебра и роданид аммония.
Роданометрическим методом пользуются для определения галоген-ионов и серебра в серебряных сплавах.
В роданометрии в качестве индикатора для определения точки эквивалентности применяют насыщенный раствор железо-аммонийных квасцов (см. § 2).
В отличие от метода Мора, метод Фольгарда обладает рядом преимуществ.
1. Роданометрический метод применим для определения хлоридов, бромидов, иодидов, роданидов и ионов серебра.
2. Метод применим для титрования кислых растворов, так как осадок нерастворим в кислотах. Эта особенность метода делает его очень удобным при анализе серебряных сплавов, которые растворяют в кислотах, и количественном определении галогенидов в сильнокислых средах, так как галогениды в указанных средах нельзя титровать по методу Мора или в присутствии адсорбционных индикаторов.
3. Другие ионы и др.), мешающие определению по методу Мора, в большинстве случаев не мешают определению по методу Фольгдрда,
9) Термохимические расчеты.
Основной принцип, на котором основываются все термохимические расчеты, установлен в 1840 г. русским химиком акад. Г. И. Гессом. Этот принцип, известный под названием закона Гесса и являющийся частным случаем закона сохранения энергии, можно сформулировать так:
Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.
Рассмотрим пример, поясняющий закон Гесса. Раствор сульфата натрия можно приготовить из растворов серной кислоты и гидроксида натрия двумя способами:
1. Смешать раствор, содержащий два моля , с раствором, содержащим один моль .
2. Смешать раствор, содержащий один моль , с раствором, содержащим один моль , и к полученному раствору кислой соли добавить раствор, содержащий еще один моль .
Запишем термохимические уравнения этих реакций.
Первый способ:
Второй способ:
Символ (водн.) означает, что вещество взято в виде водного раствора.
Согласно закону Гесса, тепловой эффект в обоих случаях должен быть одним и тем же. Действительно, складывая тепловые эффекты, отвечающие двум стадиям второго способа, получаем тот же суммарный тепловой эффект, который наблюдается при первом способе проведения процесса: 61,7+69,7=131,4 кДж.
Таким образом, подобно обычным уравнениям химических реакций, термохимические уравнения можно складывать.
Закон Гесса дает возможность вычислять тепловые эффекты реакции в тех случаях, когда их непосредственное измерение почему-либо неосуществимо. В качестве примера такого рода расчетов рассмотрим вычисление теплоты образования оксида углерода (II) из графита и кислорода. Измерить тепловой эффект реакции
очень трудно, потому что при сгорании графита в ограниченном количестве кислорода получается не оксид углерода (II), а его смесь с диоксидом углерода. Но теплоту образования СО можно вычислить, зная его теплоту сгорания и теплоту образования диоксида углерода .
Горение графита выражается термохимическим уравнением:
Для вычисления теплоты образования СО запишем эту реакцию в виде двух стадий
и сложим термохимические уравнения, отвечающие этим стадиям. Получим суммарное уравнение:
Согласно закону Гесса, тепловой эффект этой суммарной реакции равен тепловому эффекту реакции непосредственного сгорания графита, т. е. . Отсюда или
Рассмотрим еще один пример применения закона Гесса. Вычислим тепловой эффект реакции сгорания метана , зная теплоты образования метана ) и продуктов его сгорания — диоксида углерода (393,5 ) и воды (285,8 ). Для вычисления запишем реакцию горения метана сначала непосредственно, а затем разбив на стадии. Соответствующие термохимические уравнения будут иметь вид:
Складывая последние три термохимические уравнения, отвечающие проведению реакции по стадиям, получим суммарное уравнение горения метана:
Согласно закону Гесса, , откуда теплота сгорания метана .
Рассмотренный пример иллюстрирует практически важное следствие закона Гесса: тепловой эффект химической реакции равен сумме теплот образования получающихся веществ за вычетом суммы теплот образования исходных веществ. Оба суммирования производятся с учетом числа молей участвующих в реакции веществ в соответствии с ее уравнением.