
- •Первая нормальная форма.
- •Основной пример. Отношение (Сотрудники-Отделы-Проекты)
- •Функциональные зависимости отношений.
- •Вторая нормальная форма.
- •Анализ декомпозированных отношений
- •Третья нормальная форма.
- •Алгоритм приведения к 3нф.
- •Сравнение нормализованной и ненормализованной модели.
- •Корректность процедуры нормализации - декомпозиция без потерь.
- •Теорема Хеза.
- •Четвертая нормальная форма.
- •Многозначные зависимости.
- •Теорема Фейджина.
- •Пятая нормальная форма.
- •Зависимости соединения.
- •Приведение от 3нф к 5нф.
- •Информационная система. Состав и свойства.
- •Функциональные части ис. Обеспечивающие части ис.
- •Средства структурного анализа и их взаимоотношения.
- •Диаграммы потоков данных.
- •Основные компоненты диаграммы потоков данных.
- •Контекстная диаграмма dfd и детализация процессов.
- •Процесс построения модели dfd
- •Триггеры и ограничения. События, условия и действия.
- •Объявление и открытие курсора.
- •Оператор fetch.
- •Предметная область и ее модель.
- •Физическое проектирование бд.
- •Процедурные и декларативные языки манипулирования данными.
- •Потребительские свойства ис.
- •Характерные особенности современных крупных проектов ис.
- •Частные принципы создания ис.
- •Организационно-технологические принципы создания ис.
- •Аспекты описания ис.
- •Стадии проектирования ис.
- •Предпроектная стадия проектирования ис.
- •Этап проектирования ис.
- •Этап внедрения ис.
- •Анализ информационных потребностей ис.
- •Жизненный цикл программного обеспечения ис.
- •Модели жизненного цикла по ис.
- •Каскадная модель жизненного цикла по ис.
- •Спиральная модель жизненного цикла по ис.
- •Итерационная модель жизненного цикла по ис.
- •Этап определения стратегии.
- •Принципы структурного анализа.
- •Словарь данных dfd.
- •Спецификации управления.Диаграммы переходов состояний (std).
- •Из каких объектов состоит std.
- •Основные понятия er-диаграмм: сущности, экземпляры, атрибуты, связи.
- •Типы и модальности связей.
- •Более сложные элементы er-модели.
- •Подтипы и супертипы.
- •Получение реляционной схемы из er-диаграммы.
- •Пример разработки простой er-модели.
- •Проектирование баз данных.
- •Концептуальное и логическое проектирование бд.
- •Денормализация для оптимизации
- •Физическое проектирование бд. Типы данных.
- •Физическое проектирование бд. Индексы, кластеры.
- •Физическое проектирование бд. Временные данные.
- •Физическое проектирование бд. Хранение объектов данных.
- •Оптимизация запросов, основные понятия.
- •Синтаксическая оптимизация
- •Оптимизация, основанная на правилах
- •Оптимизация, основанная на вычислении стоимости
- •Последовательность шагов оптимизации запросов
- •Физические операции манипулирования данными.
- •Анализ запросов с целью повышения скорости их выполнения
- •Использование базовых переменных, понятие курсора
- •Базовая переменная sqlstate.
- •Операции встроенного sql, не использующие курсоров.
- •Операции, использующие курсоры.
- •Операторы позиционного удаления и модификации данных.
- •1.Оператор позиционного удаления
- •2.Оператор позиционной модификации
- •Понятие, назначение и структура хранимых процедур.
- •Использование хранимых процедур.
- •Операторы окончания транзакции.
- •Встроенный sql в vba.
- •Уровни моделирования выделяемые при разработке базы данных.
- •Принципы проектирование реляционных баз данных
- •Критерии оценки качества логической модели данных. Адекватность базы данных предметной области
- •Назначение нормализации отношений.
- •Приведение к 5нф.
- •Этапы разработки проекта: стратегия и анализ.
- •Этапы проектирования.Стратегия.
- •Этап анализа.
- •Основные методологии структурного анализа.
- •Сильные и слабые сущности.
- •Некоторые принципы проверки качества и полноты информационной модели.
- •Методология idef1х.
- •Идентифицирующие и неидентифицирующие связи.
- •Мощность связи.
Средства структурного анализа и их взаимоотношения.
Структурным анализом принято называть метод исследования системы, которое начинается с ее общего обзора и затем детализируется, приобретая иерархическую структуру со все большим числом уровней.
Для целей моделирования систем вообще, и структурного анализа в частности, используются три группы средств, иллюстрирующих:
функции, которые система должна выполнять;
отношения между данными;
зависящее от времени поведение системы (аспекты реальноговремени).
Среди всего многообразия средств решения данных задач в методологиях структурного анализа наиболее часто и эффективно применяемыми являются следующие:
DFD (Data Flow Diagrams) – диаграммы потоков данных совместно со словарями и спецификациями процессов или миниспецификациями;
ERD (Entity-Relationship Diagrams) – диаграммы "сущность-связь";
STD (State Transition Diagrams) – диаграммы переходов состояний.
Все они содержат графические и текстовые средства моделирования: первые – для удобства демонстрирования основных компонент модели, вторые – для обеспечения точного определения ее компонент и связей.
Диаграммы потоков данных.
DFD (Data Flow Diagrams) – диаграммы потоков данных
Логическая DFD показывает:
внешние по отношению к системе источники истоки (адресаты) данных;
идентифицирует логические функции (процессы);
идентифицирует группы элементов данных, связывающие одну функцию с другой (потоки);
идентифицирует хранилища (накопители) данных, к которым осуществляется доступ.
Структуры потоков данных и определения их компонент хранятся и анализируются в словаре данных.
Каждая логическая функция (процесс) может быть детализирована с помощью DFD нижнего уровня.
Когда дальнейшая детализация перестает быть полезной, переходят к выражению логики функции при помощи спецификации процесса (миниспецификации).
Содержимое каждого хранилища также сохраняют в словаре данных, модель данных хранилища раскрывается с помощью ERD.
В случае наличия реального времени DFD дополняется средствами описания зависящего от времени поведения системы, раскрывающимися с помощью STD.
Основные компоненты диаграммы потоков данных.
Основные компоненты диаграммы потоков данных
ПОТОКИ ДАННЫХ являются механизмами, использующимися для моделирования передачи информации (или даже физических компонент) из одной части системы в другую. Важность этого объекта очевидна: он дает название целому инструменту. Потоки на диаграммах обычно изображаются именованными стрелками, ориентация которых указывает направление движения информации. Иногда информация может двигаться в одном направлении, обрабатываться и возвращаться назад в ее источник. Такая ситуация может моделироваться либо двумя различными потоками, либо одним – двунаправленным.
Назначение ПРОЦЕССА состоит в продуцировании выходных потоков из входных в соответствии с действием, задаваемым именем процесса. Это имя должно содержать глагол в неопределенной форме с последующим дополнением (например, ВЫЧИСЛИТЬ МАКСИМАЛЬНУЮ ВЫСОТУ). Кроме того, каждый процесс должен иметь уникальный номер для ссылок на него внутри диаграммы. Этот номер может использоваться совместно с номером диаграммы для получения уникального индекса процесса во всей модели.
ХРАНИЛИЩЕ (НАКОПИТЕЛЬ) ДАННЫХ позволяет на определенных участках определять данные, которые будут сохраняться в памяти между процессами. Фактически хранилище представляет "срезы" потоков данных во времени. Информация, которую оно содержит, может использоваться в любое время после ее определения, при этом данные могут выбираться в любом порядке. Имя хранилища должно идентифицировать его содержимое и быть существительным. В случае, когда поток данных входит или выходит в/из хранилища, и его структура соответствует структуре хранилища, он должен иметь то же самое имя, которое нет необходимости отражать на диаграмме.
ВНЕШНЯЯ СУЩНОСТЬ (или ТЕРМИНАТОР) представляет сущность вне контекста системы, являющуюся источником или приемником системных данных. Ее имя должно содержать существительное, например, СКЛАД ТОВАРОВ, Предполагается, что объекты, представленные такими узлами, не должны участвовать ни в какой обработке.