Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy_prikladnoe_programmnogo_obespechenia.doc
Скачиваний:
23
Добавлен:
01.05.2025
Размер:
1.03 Mб
Скачать
  1. Инструменты анализа данных. Таблица данных.

Таблица подстановки – это диапазон ячеек, который содержит результаты подстановки различных значений в одну или несколько имеющихся в таблице формул. Таблица подстановки позволяет быстро вычислить несколько версий в рамках одной операции, а также просмотреть и сравнить результаты разных вариантов. При этом возможны два типа таблицы: таблица подстановки с одним входом (ячейкой ввода переменной) и таблица с двумя входами. Ячейка ввода – это любая ячейка листа, в которую подставляется по очереди значение из таблицы данных.

  1. Сценарии. Создание сценариев.

Веб-сценарий — это тип компьютерной программы, используемой для динамического обновления веб-страницы. Например, веб-сценарий можно использовать для помещения на страницу счетчика числа посетителей, увеличивающегося при каждом посещении веб-страницы, или для отображения числа дней, оставшихся до определенного события: «осталось x дней», где x каждый день уменьшается на 1. Обычно веб-сценарии выполняются веб-обозревателем при открытии веб-страницы, как правило, для отображения возвращаемых сценарием сведений. Создание веб-сценариев является дополнительным средством Microsoft Office, требующим знаний по программированию. Сценарии на языке Microsoft Visual Basic Scripting Edition (VBScript) или JavaScript можно добавлять на веб-страницы в Microsoft Word, Microsoft Excel, Microsoft PowerPoint и Microsoft FrontPage.

Сценарии полезны при разработке собственных решений на основе Интернета. Они предоставляют полную объектную модель для веб-обозревателя и объектов на текущей странице. Это позволяет писать программы, управляющие элементами страницы, без углубленного знания языка HTML и способов представления объектов. Также можно создать сценарий, специально предназначенный для обработки событий, происходящих с объектами (такими как элементы ActiveX) на странице.

  1. Компьютерная графика. Основные понятия.

Характеристика компьютерной графики

Одним из популярных направлений использования персонального компьютера является компьютерная графика. В каждой организации возникает потребность в рекламных объявлениях, листовках, буклетах и т.д. В связи с появлением и развитием Интернета появилась широкая возможность использования графических программных средств. Росту популярности графических программных средств, способствовало развитие World Wide Web («всемирной паутины»), которая связала воедино миллионы «домашних страниц».

Различают три вида компьютерной графики: растровая графика, векторная графика и фрактальная графика. Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Для этой цели сканируют иллюстрации, подготовленные художником на бумаге, или фотографии. В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. В Интернете пока применяются только растровые иллюстрации.

Программные средства для работы с векторной графикой, наоборот, предназначены для создания иллюстраций и в меньшей степени для их обработки.

Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах.

Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики проще. Имеются примеры высокохудожественных произведений, созданных средствами векторной графики, но они скорее исключение, чем правило. Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов.

Создание фрактальной художественной композиции, состоит не в рисовании или оформлении, а в программировании. Фрактальную графику чаще используют в развлекательных программах.

Существует несколько способов получения цифрового изображения. Это получение изображения путем обработки через цифровую камеру, путем сканирования и непосредственно с помощью программных средств (PHOTOSHOP, CorelDraw и др.)

Ряд графических редакторов, например, Painter и Fauve Matisse, ориентирован непосредственно на процесс рисования. В них акцент сделан на использование удобных инструментов рисования и на создание новых художественных инструментов и материалов. К простейшим программам этого класса относится также графический редактор Paint.

Некоторый класс растровых графических редакторов предназначен не для создания изображений «с нуля», а для обработки готовых рисунков с целью улучшения их качества и реализации творческих идей. К таким программам, в частности, относятся Adobe Photoshop, Photostyler, Picture Publisher и др. Исходная информация для обработки на компьютере может быть получена разными путями: сканированием цветной иллюстрации, загрузкой изображения, созданного в другом редакторе, или вводом изображения от цифровой фото- или видеокамеры. При создании художественных композиций отдельные фрагменты часто заимствуют из библиотек изображений-клипартов, распространяемых на компакт-дисках. Основа будущего рисунка или его отдельные элементы могут быть созданы и в векторном графическом редакторе, после чего их экспортируют в растровом формате.

Для работы с изображениями, записанными на CD или принятыми от цифровой фотокамеры, в операционной системе Windows 98 есть удобное приложение Picture It! Оно предназначено для обработки изображений (регулировка яркости и контрастности, художественная ретушь, устранение эффекта «красного глаза») и их каталогизации.

В компьютерной графике с понятием разрешения обычно происходит больше всего путаницы, поскольку приходится иметь дело сразу с несколькими свойствами разных объектов. Следует четко различать: разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.

Разрешение экрана - это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселах (точках) и определяет размер изображения, которое может поместиться на экране целиком. Разрешение принтера - это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.

Разрешение изображения - это свойство самого изображения. Оно тоже измеряется в точках на дюйм - dpi и задается при создании изображения в графическом редакторе или с помощью сканера. Так, для просмотра изображения на экране достаточно, чтобы оно имело разрешение 72 dpi, а для печати на принтере - не меньше как 300 dpi. Значение разрешения изображения хранится в файле изображения.

Физический размер изображения определяет размер рисунка по вертикали (высота) и горизонтали (ширина) может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом. Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселях, чтобы знать, какую часть экрана оно занимает. Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет.

Физический размер и разрешение изображения неразрывно связаны друг с другом. При изменении разрешения автоматически меняется физический размер.

При работе с цветом используются понятия: глубина цвета (его еще называют цветовое разрешение) и цветовая модель. Для кодирования цвета пиксела изображения может быть выделено разное количество бит. От этого зависит то, сколько цветов на экране может отображаться одновременно. Чем больше длина двоичного кода цвета, тем больше цветов можно использовать в рисунке. Глубина цвета - это количество бит, которое используют для кодирования цвета одного пиксела. Для кодирования двухцветного (черно-белого) изображения достаточно выделить по одному биту на представление цвета каждого пиксела. Выделение одного байта позволяет закодировать 256 различных цветовых оттенков. Два байта (16 битов) позволяют определить 65536 различных цветов. Этот режим называется High Color. Если для кодирования цвета используются три байта (24 бита), возможно одновременное отображение 16,5 млн цветов. Этот режим называется True Color. От глубины цвета зависит размер файла, в котором сохранено изображение.

Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью. Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. Эти модели известны под названиями: RGB, CMYK, НSB.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]