
- •1.Предмет статистической науки и ее задачи на современном этапе.
- •4..Виды статистического наблюдения.
- •2.Статистическая совокупность, ее виды. Единицы совокупности.
- •3.Этапы статистического исследования.
- •4..Виды статистического наблюдения.
- •5..Способы сбора статистических сведений.
- •6..План и программа статического наблюдения.
- •7..Статическая отчетность, принципы ее организации.
- •8. Ошибки статистического наблюдения. Методы проверки достоверности статистических данных.
- •9. Сводка статистических данных.
- •10. Понятие о группировке, ее задачи и виды.
- •11.Принципы построения группировок.
- •12.Ряды распределения, их виды.
- •13. Статистические таблицы, виды, правила построения и оформления.
- •14. Классификация статистических показателей.
- •15. Абсолютные статистические величины, виды правила построения и оформления.
- •16. Относительные величины, способы их расчета.
- •17Сущность и значение средних величин, их виды
- •18.Средняя арифметическая, ее методы расчета и основные математические свойства.
- •19 .Средняя гармоническая и другие
- •20. Мода и медиана, способы их
- •21. Статистическое изучение вариации. Показатели вариации и методы их расчета.
- •23 Дисперсия альтернативного признака.
- •24 Виды дисперсии и правило их сложения.
- •24.Виды дисперсии и правило их сложения.
- •25 Сущность выборочного наблюдения.
- •27Ошибки выборки и методы их расчета.
- •28Определение необходимой численности выборки.
- •3 1. Показатели динамического ряда, способы их счета и взаимосвязь. Для углубленного изучения процессов во времени рассчитывают показатели динамического ряда.
- •33.Понятие тенденции ряда динамики и методы её выявления
- •34.Сезонные колебания и методы их изучения
- •35 Сущность индексов.
- •36 Индивидуальные и сводные индексы. Принципы построения системы взаимосвязанных агрегатных индексов.
- •37 Средние индексы и их виды.
- •38 Индексный метод анализа динамики среднего уровня (Индексы переменного постоянного состава и структурных сдвигов).
- •Ряды индексов с постоянной и переменной базами сравнения, с постоянными и переменными весами.
- •40.Взаимосвязи индексов.
- •41. Территориальные индексы.
- •42. Измерение связей между социально-экономическими явлениями
- •43. Методы измерения связей.
- •45 Линейный коэффициент корреляции.
- •46 Понятие криволинейной зависимости, оценка тесноты связи при криволинейной зависимости.
- •47 Понятие о множественной корреляции.
16. Относительные величины, способы их расчета.
Относительные величины в статистике – это количественные характеристики отношения двух сравниваемых между собой показателей. Относительные величины получаются в результате деления одного из показателей на другой, принятый за базу сравнения.
Относительные величины – один из важнейших способов обобщения и анализа статистической информации. Цели и направления исследования определяют выбор вида относительных величин.
При расчете относительных величин следует иметь в виду, что в числителе всегда находится показатель, отражающий то явление, которое изучается, т.е. сравниваемый показатель, а в знаменателе — показатель, с которым производится сравнение, принимаемый за основание, или базу сравнения. База сравнения выступает в качестве своеобразного измерителя. В зависимости от того, какое числовое значение имеет база сравнения (основание), результат отношения может быть выражен либо в форме числа (коэффициента) или процента, либо в форме промилле или децимилле. Существуют также именованные относительные величины. Например, показатель фондоотдачи в торговле получают делением объема товарооборота на среднегодовую стоимость основных фондов. Этот коэффициент показывает, сколько рублей товарооборота приходится на каждый рубль основных фондов.
17Сущность и значение средних величин, их виды
Наиболее распространенной формой статистического показате¬ля является средняя величина. Показатель в форме средней величи-ны выражает типичный уровень признака в совокупности. Широкое применение средних величин объясняется тем, что они позволяют сравнивать значения признака у единиц, относящихся к разным сово¬купностям. Например, можно сравнивать среднюю продолжитель¬ность рабочего дня, средний тарифный разряд рабочих, средний уро¬вень заработной платы по различным предприятиям.
Сущность средних величин заключается в том, что в них взаимопогашаются отклонения значений признака у отдельных единиц со¬вокупности, обусловленные действием случайных факторов. Поэтому средние величины должны рассчитываться для достаточно много¬численных совокупностей (в соответствии с законом больших чи¬сел). Надежность средних величин зависит также от колеблемости значений признака в совокупности. В общем случае, чем меньше ва¬риация признака и чем больше совокупность, по которой определяет¬ся средняя величина, тем она надежнее.
Типичность средней величины непосредственным образом свя¬зана также с однородностью статистической совокупности. Сред¬няя величина только тогда будет отражать типичный уровень призна-ка, когда она рассчитана по качественно однородной совокупности. В противном случае метод средних используется в сочетании с методом группировок. Если совокупность неоднородна, то общие средние за¬меняются или дополняются групповыми средними, рассчитанными по качественно однородным группам.
Выбор вида средних определяется экономическим содержани¬ем исследуемого показателя и исходных данных. Наиболее часто в статистике применяются следующие виды средних величин: степен¬ные средние (арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т. д.), средняя хронологическая, а также структурные средние (мода и медиана).