
- •Основы биохимии спорта курс лекций для студентов, обучающихся по направлению подготовки
- •050100.62 «Педагогическое образование. Профиль: физическая культура»
- •§1. Введение.
- •§ 2. Биологическая роль белков.
- •§ 3. Строение молекулы белка.
- •§ 4. Классификация белков.
- •§ 5. Физико-химические свойства белков.
- •§ 6. Строение ферментов.
- •§ 7. Механизм действия ферментов. Специфичность.
- •§ 8. От чего зависит скорость ферментативных реакций?
- •§ 9. Классификация и номенклатура ферментов.
- •Тема2. Этапы метаболизма и биологическое окисление.
- •§1. Общая характеристика обмена веществ.
- •§ 2. Строение и биологическая роль атф.
- •Аденин – рибоза – ф.К. – ф.К. – ф.К.
- •§3. Тканевое дыхание.
- •§ 4. Анаэробное, микросомальное и свободнорадикальное окисление.
- •§ 2. Строение и биологическая роль глюкозы и гликогена. Синтез и распад гликогена.
- •§ 3. Катаболизм углеводов. Гексозодифосфатный путь расщепления глюкозы.
- •Общая схема гдф-пути
- •§ 4. Гексозомонофосфатный путь распада углеводов.
- •Тема 4. Строение и обмен жиров и липоидов.
- •§ 1. Химическое строение и биологическая роль жиров и липоидов.
- •§ 2. Переваривание и всасывание жиров.
- •§ 3. Катаболизм жиров.
- •§ 4. Синтез жиров
- •Тема 5. Строение и обмен нуклеиновых кислот.
- •§ 1. Строение мононуклеотидов.
- •§ 2. Строение нуклеиновых кислот.
- •Структура днк
- •Принцип комплементарности.
- •§ 3. Переваривание и всасывание нуклеиновых кислот. Катаболизм.
- •§ 4. Синтез нуклеотидов.
- •§ 5. Синтез нуклеиновых кислот.
- •Тема 6. Обмен белков.
- •§1. Переваривание и всасывание белков.
- •§ 2. Катаболизм белков.
- •§ 3. Синтез белков.
- •§ 4. Метаболизм аминокислот.
- •§ 5. Азотистый баланс. Пути обезвреживания аммиака.
- •Раздел 3.Водно-минеральный обмен. Витамины. Гормоны
- •Тема 7. Обмен воды и солей. Витамины.
- •§1. Содержание воды в организме. Физико-химические свойства воды.
- •§ 2. Биологическая роль воды. Поступление и выделение воды.
- •§ 3. Регуляция водного баланса и его нарушения.
- •§ 4. Содержание минеральных веществ и их роль в организме.
- •§ 5. Общая характеристика витаминов.
- •Тема 8. Гормоны. Биохимия крови и мочи.
- •§ 1. Общая характеристика гормонов.
- •2. Биохимия крови.
- •Самостоятельно плазма крови выполняет следующие функции:
- •Совместно с форменными элементами плазма крови выполняет следующие функции:
- •Белки плазмы крови.
- •Форменные элементы крови (из курса физиологии)
- •§ 3. Химический состав и физико-химические свойства мочи. Из курса физиологии
- •§ 2. Сократительные элементы (миофибриллы).
- •Строение и механизм сокращения скелетных мышц.
- •§ 3. Механизм мышечного сокращения и расслабления.
- •Тема 10. Энергетическое обеспечение мышечногосокращения.
- •§ 1.Количественные критерии путей ресинтеза атф.
- •§ 2. Аэробный путь ресинтеза атф.
- •§ 3. Анаэробные пути ресинтеза атф.
- •§ 4. Соотношение между различными путями ресинтеза атф при мышечной работе. Зоны относительной мощности мышечной работы.
- •§ 2. Биохимические изменения в скелетных мышцах.
- •§ 3. Биохимические сдвиги в головном мозге и миокарде.
- •§ 4. Биохимические сдвиги в печени.
- •§ 5. Биохимические сдвиги в крови.
- •§ 6. Биохимические сдвиги в моче.
- •Тема 12. Биохимические механизмы утомления.
- •§ 1. Охранительное или запредельное торможение.
- •§ 2.Нарушение функций регуляторных и вегетативных систем.
- •§ 3. Исчерпание энергетических резервов.
- •§ 4. Роль лактата в утомлении.
- •§ 5. Повреждение биологических мембран свободнорадикальным окислением.
- •Тема 13.Биохимические закономерности восстановления после мышечной работы.
- •§ 1. Срочное восстановление.
- •§ 2. Отставленное восстановление.
- •§ 3. Методы ускорения восстановления.
- •Тема 14. Биохимические закономерности адаптации к мышечной работе.
- •§ 1. Ч то такое адаптация?
- •§ 2. Срочная или экстренная адаптация.
- •§ 3. Долговременная или хроническая адаптация.
- •§ 4. Тренировочный эффект.
- •§ 5. Биологические принципы спортивной тренировки.
- •§ 2. Алактатная работоспособность.
- •§ 3. Лактатная работоспособность.
- •§ 4. Аэробная работоспособность.
- •§ 5. Специфичной спортивной работоспособности.
- •§ 6. Возрастные особенности работоспособности.
- •§ 7. Биохимия и педагогические методы развития работоспособности.
- •Тема 16. Биохимические способы повышения спортивной работоспособности.
- •§ 1. Общая характеристика фармакологических средств повышения работоспособности.
- •§ 2. Биохимическая характеристика отдельных классов фармакологических средств.
- •§ 3. Допинги.
- •§ 4. Основы биохимии питания. Рациональное питание.
- •§ 5. Биохимический контроль в спорте.
- •Вопросы экзамена по биохимии.
- •Содержание.
§ 5. Синтез нуклеиновых кислот.
Для синтеза нуклеиновых кислот используются мононуклеотиды обязательно в трифосфатной форме. Такие нуклеотиды содержат в своей молекуле три остатка фосфорной кислоты и обладают повышенным запасом энергии. Переход нуклеотидов в трифосфатную форму осуществляется путем взаимодействия с АТФ. Для синтеза РНК используются АТФ, ГТФ, УТФ, ЦТФ. А для синтеза ДНК, соответственно, дАТФ, дГТФ, дТТФ, дЦТФ.
Процесс репликации или редупликации ДНК иначе можно назвать удвоением. Он происходит перед делением клетки. Осуществляет его специальный фермент ДНК полимераза. Этот фермент разделяет две цепи двойной спирали и достраивает к каждой из них комплементарную ей цепь. Таким образом, из одной молекулы образуется две одинаковые дочерние молекулы, причем обе цепи ДНК служат матрицами для дочерних цепей. По мере присоединения к матрице нуклеотиды связываются в полинуклеотидные нити, которые сразу же закручиваются в двойную спираль. Биологический смысл репликации состоит в том, что из одной молекулы ДНК появляются две ее полные копии. Процесс этот идет с очень высокой точностью – ошибки крайне редки.
Процесс синтеза РНК называется транскрипцией. Процесс образования белков на матрицах информационной РНК называется трансляцией.
Транскрипцию осуществляет фермент РНК-полимераза. Этот фермент соединяет между собой рибонуклеотиды, составляющие остов молекулы РНК. Делает это фермент на основании считывания последовательности молекулы ДНК и, достраивая комплементарные ей последовательности. Показано, что в этом процессе только одна из двух цепей ДНК играет роль матрицы. Бывают, правда, и исключения – это ДНК некоторых вирусов. В процессе транскрипции участвует только ограниченный участок ДНК. Именно этот участок ДНК и понимают в молекулярной биологии, как ген.
Тема 6. Обмен белков.
1. Переваривание и всасывание белков.
2. Катаболизм белков.
3. Синтез белков.
4. Метаболизм аминокислот.
5. Азотистый баланс. Обезвреживание аммиака.
§1. Переваривание и всасывание белков.
В сутки с пищей поступает около 100 г белков. Переваривание белков осуществляют протеолитические ферменты желудочного панкреатического и кишечного соков.
Расщепление пищевых белков начинается в полости желудка под действием желудочного сока. Желудочный сок содержит фермент пепсин. Вначале пепсин активируется при этом в его предшественнике – пепсиногене – открывается активный центр. Этот механизм активации называется аутокатализ. Образование активного центра в полости желудка предупреждает нежелательное воздействие этого фермента на белки клеток желудка, где происходит его образование. Муцин, покрывающий защитным слоем поверхность пищеварительного тракта, устойчив к действию пепсина.
Под воздействием пепсина в пищевых белках расщепляются пептидные связи, находящиеся в глубине молекул. В результате такого действия пепсина белковые молекулы превращаются в смесь полипептидов различной длины, которую иногда называют пептон. Тепловая переработка пищи вызывает денатурацию белков, то есть изменение пространственной формы белковой молекулы. Это делает внутренние пептидные связи более доступными для пепсина и других протеолитических ферментов.
В состав желудочного сока входит и соляная кислота. Она также способствует активизации пепсина. Кроме того, она создает оптимальную для действия пепсина сильнокислую среду. Соляная кислота также вызывает денатурацию пищевых белков, что способствует облегчению действия пепсина. Наконец, соляная кислота обладает бактерицидным действием, обезвреживает пищу от микроорганизмов.
Дальнейшее переваривание белков протекает в тонком кишечнике. Из желудка поступает полипептидная смесь, состоящая из фрагментов разной величины и длины. В тонком кишечнике эта смесь вначале подвергается действию ферментов поджелудочной железы (трипсина, химотрипсина, эластазы). Эти ферменты расщепляют полипептиды, поступившие в кишечник до ди- и трипептидов. Причем, эластаза расщепляет прочные белки – коллаген и эластин. Таким образом, возникают олигопептиды.
Завершается переваривание белков в тонком кишечнике под действием ферментов кишечного сока. Эти ферменты встроены в стенки микроворсинок и выделяются в полость кишечника. Выделяют два типа переваривания пристеночное и полостное. Аминокислоты, возникающие на поверхности микроворсинок, сразу всасываются в кровь. Незначительная часть аминокислот всасывается в лимфатическую систему. Всасывание аминокислот процесс активный, идущий с затратами АТФ,