
- •Донецк-2001
- •Донецк-2001
- •1Введение в теорию множеств
- •1.1Основные определения
- •1.2Способы задания множества
- •1.3Операции над множествами
- •1.4Основные законы алгебры множеств
- •1.5Контрольные вопросы
- •2Отношения на множествах
- •2.1Теоретические сведения
- •2.2Способы задания отношений
- •2.3Свойства бинарных отношений
- •2.4Функциональные отношения
- •2.5Контрольные вопросы
- •3Основные понятия комбинаторики.
- •3.1Правила суммы и произведения
- •3.1.1Правила суммы
- •3.1.2Правило произведения
- •3.1.3Сложный выбор объектов
- •3.2Соединения без повторений
- •3.2.1Перестановки
- •3.2.2Размещения
- •3.2.3Сочетания
- •3.2.4Свойства сочетаний
- •3.3Соединения с повторениями
- •3.3.1Перестановки с повторениями
- •3.3.2Размещения с повторениями.
- •3.3.3Сочетания с повторениями.
- •3.4Контрольные вопросы
- •4Булева алгебра
- •4.1Определение функции алгебры логики
- •4.2Способы описания фал
- •4.2.1Табличный способ представления фал
- •4.2.2Графическое представление фал
- •4.3Функции алгебры логики одного аргумента
- •4.4Функции алгебры логики двух аргументов
- •4.5Условные приоритеты булевых функций
- •4.6Фиктивные аргументы фал
- •4.6.1Алгоритм нахождения фиктивных аргументов
- •4.8Выражение одних элементарных функций через другие
- •4.9Аналитическая запись фал
- •4.9.1Дизъюнктивная нормальная форма (днф)
- •4.10Полные системы фал
- •4.11Контрольные вопросы
- •5Методы минимизации функций алгебры логики.
- •5.1Основные определения
- •5.2Минимизация фал на кубе
- •Пункты решения задачи по минимизации
- •Четырехмерное пространство
- •5.3Метод Квайна
- •5.4Метод Мак-Класки
- •5.5Графический метод минимизации: карты Карно и диаграммы Вейча
- •5.6Основные принципы построения карт Карно
- •5.7Контрольные вопросы
- •6Контрольные работы для студентов заочного отделения.
- •6.1Контрольная работа № 1.
- •6.2Контрольная работа № 2.
- •6.3Алгоритм генерации варианта
- •7Примеры решения типовых зданий.
- •7.1Контрольная работа №1.
- •7.2Контрольная работа №2.
- •1 Введение в теорию множеств 3
- •2 Отношения на множествах 10
- •3 Основные понятия комбинаторики. 15
- •4 Булева алгебра 23
- •5 Методы минимизации функций алгебры логики. 36
- •6 Контрольные работы для студентов заочного отделения. 46
- •7 Примеры решения типовых зданий. 58
4.10Полные системы фал
Система ФАЛ {f1, f2,…, fn} называется полной в некотором классе функций, если любая функция из этого класса может быть представлена суперпозицией этих функций.
Система ФАЛ, являющаяся полной в некотором классе функций, называется базисом.
Минимальным базисом называется такой базис, для которого удаление хотя бы одной из функций fi, которые его образуют, превращает эту систему функций в неполную.
Любая функция может быть представлена с помощью элементарных функций {¬, &, }. Эта система ФАЛ образует универсальный базис.
Наиболее популярными в алгебре логики являются базисы{,¬},{&,¬}, {},{|}, которые являются минимальными.
Например:
Представить функцию в базисах
{, }, {|}. Для проверки результата составить таблицу истинности.
Решение
Для перевода в базис {, } применим закон де Моргана к ДСНФ функции.
Для перевода функции в базис {|} применим следующие соотношения к ДСНФ функции:
Обозначим
Выполним перевод в базис {|} по действиям.
Проверим преобразования с использованием таблицы истинности:
2 1 3 5 4 6
Таблица 6. Таблица истинности для выражения :
№ |
x |
Y |
z |
y | y |
x | (y | y) |
3 |
z | z |
5 |
6 |
|
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
2 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
3 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
4 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
5 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
6 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
7 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
Аналогично, проверяем и .
Для проверки, построим таблицу истинности для полученной формы функции F(x, y, z).
Таблица 7. Таблица истинности для F(x, y, z)
№ |
x |
y |
z |
|
|
|
A |
B |
C |
A | B |
|
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
3 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
4 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
5 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
6 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
7 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
Cтолбцы, соответствующие функции F(x, y, z) в таблицах №7 и №4 равны, следовательно, преобразования выполнены правильно.