
- •А.В. Звягинцева, а.А. Павленко основы токсикологии Учебное пособие
- •Воронеж 2012
- •Утверждено Редакционно-издательским советом университета в качестве учебного пособия
- •1. Основные понятия токсикологии
- •1.1. Предмет и задачи токсикологии
- •1.2. Классификация вредных веществ
- •1.3. Классификация промышленных ядов
- •1.4. Классификация пестицидов
- •1.5. Классификация отравлений
- •2. Параметры и основные закономерности токсикометрии
- •2.1. Экспериментальные параметры токсикометрии
- •2.2. Производные параметры токсикометрии
- •2.3. Классификация вредных веществ с учетом показателей токсикометрии
- •2.4. Санитарно-гигиеническое нормирование
- •2.4.1. Принципы гигиенического нормирования
- •2.4.2. Нормирование содержания вредных веществ
- •2.5. Методы определения параметров токсикометрии
- •2.6. Методы исследования функционального состояния экспериментальных животных
- •3. Специфика и механизм токсического действия вредных веществ
- •3.1. Понятие «химической травмы»
- •3.2. Теория рецепторов токсичности
- •4.1. Структура и свойства биологических мембран
- •4.2. Транспорт веществ через мембраны
- •4.3. Пути проникновения вредных веществ в организм человека
- •4.3.1. Абсорбция через дыхательные пути
- •4.3.2. Поглощение в желудочно-кишечном тракте
- •4.3.3. Абсорбция через кожу
- •4.4. Транспорт токсичных веществ
- •4.5. Распределение и кумуляция
- •4.6. Биотрансформация токсичных веществ
- •4.6.1. Реакции окисления, катализируемые микросомными ферментами (микросомальное окисление)
- •4.6.2. Окисление, катализируемое немикросомными ферментами (немикросомальное окисление)
- •4.6.3. Реакции восстановления, катализируемые микросомными ферментами (микросомальное восстановление)
- •4.6.4. Немикросомальное восстановление
- •4.6.5. Гидролиз, катализируемый микросомными и немикросомными ферментами
- •4.6.6. Конденсация
- •4.6.7. Различные биопревращения
- •4.7. Пути выведения чужеродных веществ из организма
- •5. Виды возможного действия промышленных ядов
- •5.1. Острые и хронические отравления
- •5.2. Основные и дополнительные факторы, определяющие развитие отравлений
- •5.3. Токсичность и структура
- •5.4. Математическая зависимость «структура - токсичность»
- •5.5. Способность к кумуляции и привыкание к ядам
- •5.6. Комбинированное действие ядов
- •5.7. Влияние биологических особенностей организма
- •5.8. Влияние факторов производственной среды
- •6. Особенности воздействия ионизирующих излучений на организм человека
- •7. Антидоты
- •7.1. Антидоты физического действия
- •7.2. Антидоты химического действия
- •7.3. Антидоты биохимического действия
- •7.4. Антидоты физиологического действия
- •Часть 2. Частная токсикология
- •8. Токсикология неорганических соединений
- •8.1. Водород и его соединения
- •8.2. Циановодород
- •8.3. Бериллий и его соединения
- •8.4. Ртуть и её соединения
- •8.5. Свинец и его соединения
- •8.6. Оксид углерода(II) (угарный газ)
- •8.7. Хлор
- •8.8. Хлороводород
- •8.9. Фтор
- •8.10. Водород фтористый
- •8.11. Сероводород
- •8.12. Сероуглерод
- •8.13. Сернистый ангидрид
- •8.14. Оксиды азота (нитрогазы)
- •8.15. Водород мышьяковистый (арсин)
- •8.16. Аммиак
- •9. Органические яды
- •9.1. Акролеин
- •9.2. Ацетальдегид
- •9.3. Бензол
- •9.4. Гидразин и его производные
- •9.5. Метил бромистый
- •9.6. Метил хлористый
- •9.7. Нитрил акриловой кислоты
- •9.8. Оксид этилена
- •9.9. Тетраэтилсвинец
- •9.10. Формальдегид
- •9.11. Хлорпикрин
- •Часть 3. Расчетные методы определения пдк вредных веществ в воздухе рабочей зоны и атмосферном воздухе населенных мест
- •10. Расчет пдк вредных веществ в воздухе производственных помещений
- •10.1. Основные обозначения и единицы измерения
- •10.2. Расчет пдКр.З по показателям токсичности
- •10.3. Определение пдКрз веществ, относящихся к изученным в токсикологическом плане классам или группам химических соединений
- •10.5. Расчет пдКрз по биологической активности химических связей
- •11. Расчет пдк вредных веществ в атмосферном воздухе
- •11.1. Расчет максимальных разовых пдк
- •11.2. Расчет среднесуточных пдк
- •Часть 4. Контрольные тесты и практические занятия
- •Классификация вредных веществ и отравлений
- •Параметры и основные закономерности токсикометрии
- •Токсикокинетика
- •Факторы, определяющие развитие отравлений
- •«Определение класса опасности вредных веществ»
- •«Определение среднесменной концентрации расчетным методом»
- •Определение класса опасности промышленных отходов
- •1. Определение класса опасности при наличии предельно допустимой концентрации в почве (пдКп)
- •2. Определение класса опасности при отсутствии пдк в почве
- •3. Определение класса опасности при отсутствии пдк в почве и ld50
- •4. Определение содержания токсичных веществ в общей массе промышленных отходов
- •Заключение
- •Часть 1. Общая токсикология
- •Часть 2. Частная токсикология
- •Часть 3. Расчетные методы определения пдк вредных веществ в воздухе рабочей зоны и атмосферном воздухе населенных мест
- •Часть 4. Контрольные тесты и практичекие
- •394026 Воронеж, Московский просп., 14
4.3.3. Абсорбция через кожу
Кожа вместе со слизистой оболочкой естественных отверстий организма покрывает поверхность тела. Она представляет собой преграду для физических, химических и биологических агентов, сохраняет целостность организма и гомеостаз, выполняет другие физиологические функции.
Кожа состоит из трех слоев: эпидермиса, собственно кожи (дермы) и подкожной ткани (гиподермиса).
С точки зрения токсикологии наибольшее значение имеет эпидермис. Он состоит из многих слоев клеток. Под самым верхним слоем расположена липидная мембрана («барьерная»). Однако эта мембрана не сплошная: волосяные мешочки и протоки потовых желез проходят через нее и достигают дермы.
Существует по крайней мере три пути проникновения токсичных веществ через кожу (рис. 7): через эпидермис (1), волосяные фолликулы (2) и выводные протоки потовых желез (3).
Первый путь характерен для неэлектролитов. Через фолликулы волосяных мешочков проникают как электролиты, так и неэлектролита.
Количество ядовитых веществ, которые могут проникнуть через кожу, находится в прямой зависимости от их растворимости в воде и липидах, величины поверхности соприкосновения с кожей и скорости кровотока в ней. Последним объясняется то обстоятельство, что при работе в условиях высокой температуры воздуха, когда кровообращение значительно усиливается, количество отравлений через кожу нитропродуктами бензола увеличивается.
Вещества с малым коэффициентом распределения, например, бензин, не способны вызвать отравление через кожу, так как быстро удаляются из организма через легкие. Вследствие этого необходимая для отравления концентрация в крови не накапливается.
Большое значение для поступления ядов через кожу имеет консистенция и летучесть вещества. Жидкие органические вещества с большой летучестью быстро испаряются с поверхности кожи и в организм не попадают. При известных условиях летучие яды могут вызвать отравление через кожу, например, если они входят в состав мазей, паст, клеев, задерживающихся длительное время на коже.
Твердые и кристаллические органические вещества всасываются через кожу медленно и могут вызвать отравление. Наибольшую опасность в этом отношении представляют малолетучие вещества маслянистой консистенции (анилин, нитробензол). Они хорошо проникают в кожу и длительно задерживаются в ней.
Рис. 7. Схема поступления ядовитых веществ через кожу
Следует учитывать, что соли многих металлов, соединяясь с жирными кислотами и кожным салом, могут превращаться в жирорастворимые соединения и проникать через барьерный слой эпидермиса (особенно ртуть и таллий).
Механические повреждения кожи (ссадины, царапины, раны и пр.), термические и химические ожоги способствуют проникновению токсичных веществ в организм.
4.4. Транспорт токсичных веществ
После поглощения любым путем вещества попадают в кровь, лимфу или какую-нибудь другую жидкость организма. Однако для большинства веществ наиболее важным средством транспортировки после всасывания до выделения является кровь.
Токсичные вещества проникают в организм в виде молекул и ионов, однако, во внутренней среде они могут подвергаться гидролизу и полимеризации, образуя коллоидные частицы.
В крови вещества находятся либо в свободном состоянии, либо связаны с каким-либо компонентом крови. Как и некоторые недиссоциированные молекулы, пары и газы могут физически растворяться в плазме в свободном виде.
Различные токсичные вещества и их метаболиты транспортируются кровью в разных формах. Вещества могут быть связаны с эритроцитами или с компонентами плазмы. Выраженное сродство к эритроцитам имеют немногие вещества. Оксид углерода связывается с гемом, а мышьяк - с глобином гемоглобина. Свинец на 96 % переносится эритроцитами. Ртуть, содержащаяся в органических соединениях, и цезий также связываются с эритроцитами, а неорганическая ртуть - с альбумином плазмы крови. Большинство веществ проявляет сродство к белкам плазмы, преимущественно к альбуминам. Связь осуществляется ионными, водородными и ван-дер-ваальсовыми силами. Токсичные вещества могут образовывать комплексы с органическими кислотами плазмы или хелатные соединения с некоторыми ее компонентами.
Как уже указывалось, из белков плазмы наиболее важным средством переноса является альбумин. Он имеет относительно крупную молекулу. При рН = 7,4 она имеет отрицательный заряд в 16 электронных единиц. Молекула содержит 100 отрицательных и 84 положительных группы (лиганды), так что может притягивать и переносить катионы и анионы. На поверхности молекул альбумина могут адсорбироваться нейтральные молекулы.
Глобулины (а, в) могут связываться с небольшими молекулами различных веществ и ионами некоторых металлов (меди, цинка, железа), а также со всеми коллоидами.
Фибриноген проявляет сродство только к очень маленьким молекулам. Белки плазмы могут переносить вещества, растворимые в липидах. Во многих случаях между белками плазмы и эритроцитами возникает конкуренция за различные вещества.
Органические кислоты (молочная, глютаминовая, лимонная) образуют комплексы с различными веществами. К последним относятся щелочноземельные элементы, редкоземельные и некоторые тяжелые металлы, находящиеся в плазме в виде катионов. Обычно комплексы с органическими кислотами способны диффундировать и легко удаляются из тканей и органов.
Присутствующие в крови природные вещества, вызывающие получение хелатных соединений, конкурируют с органическими кислотами за катионы, образуя стабильные хелаты. Путем хелатирования некоторые специальные белки (трансферрин, церулоплаз-мин) переносят ионы металлов (железа, меди). Органические лиганды веществ легко хелатируют двух- и трехвалентные ионы.
Удаление токсичного вещества из крови зависит от его свойства связываться с компонентами крови. В некоторых случаях компоненты эритроцитов или плазмы могут удерживать яды продолжительное время. Таким образом, белки крови, способные связываться с токсичным веществом, помимо транспортной функции выполняют роль своеобразного защитного барьера.