
- •87. Как влияет начальная температура перегретого пара на степень сухости его при выходе из турбины?
- •88. Для чего применяется вторичный перегрев пара?
- •89. Что и как осуществляется регенеративный подогрев питательной воды?
- •90. Что дает применение парогазовых циклов?
- •91. Как влияет на кпд цикла Ренкина и степень сухости пара на турбинный процесс дросселирования перед турбиной?
- •92. В чем сущность и экономическая целесообразность совместной выработки электроэнергии и теплоты?
- •93. Какой параметр характеризует экономичность работы теплоэлектроцентрали?
- •94. Какой параметр характеризует экономичность работы холодильной установки?
- •95. Какие основные недостатки воздушной компрессорной холодильной установки?
- •96. Изобразите в t-s диаграмме цикл воздушной компрессорной установки и эквивалентный ей обратный цикл Карно
- •97. Почему в паровых холодильных установках целесообразно использовать процесс дросселирования, а в воздушных – адиабатное расширение в турбине?
- •98.Какими свойствами должны обладать хладагенты?
- •99. Какими способами получают сжиженные газы?
- •100. Как работает тепловой насос?
- •101. Как передается теплота в процессе теплопроводности?
- •102. Сформулируйте основной закон теплопроводности?
- •103. Какой закон распределения температуры по толщине плоской и цилиндрическое стенке?
- •104. При каком условии расчет цилиндрической стенки можно заменить расчетом плоской стенки?
- •105. Всегда ли с увеличением толщины изоляции цилиндрической трубы тепловой поток через нее уменьшается? По какому условию выбирается изоляция труб?
- •106. Какова методика расчета нагрева и охлаждения простейших тел с помощью критериев Био и Фурье?
- •107. Сформулируйте основной закон теплопередачи конвекцией
- •108. Какой критерий характеризует вынужденную конвекцию?
- •109. Из каких уравнений выводятся критерии Re,Gr,Nu,Pr?
- •110. Какой критерий характеризует свободную конвекцию?
- •111. Что характеризует критерий Нуссельта?
- •112. Что такое определяющая температура и определяющий размер?
- •113. Почему при обтекании стенки жидкостью в непосредственной близости от поверхности стенки температурный градиент резко увеличивается?
- •114. В чем особенность теплоотдачи при кипении воды и конденсации водяного пара? Какие режимы кипения вам известны?
- •115. Какие длины волн ограничивают видимые и какие тепловые лучи?
114. В чем особенность теплоотдачи при кипении воды и конденсации водяного пара? Какие режимы кипения вам известны?
Ответ: Кипением называется процесс парообразования в толще жидкости. Кипение начинается тогда, когда температура внутри жидкости оказывается выше температуры насыщения (кипения) при данном давлении. Если в жидкость погружена некоторая поверхность нагрева, температура которой выше температуры насыщения при данном давлении, то на ней возникает процесс парообразования. Величина перегрева жидкости в момент вскипания по сравнению с температурой насыщения при данном давлении над плоскостью зависит от наличия тех или иных потенциальных центров парообразования (микровпадины, микропузырьки газа, искусственные неоднородности на поверхности нагрева и т.п.). Эти эффекты имеют значение при малых плотностях теплового потока. Если вся жидкость значительно перегрета против температуры насыщения (например, в результате сброса давления), то паровые пузыри образуются по всей ее толще – жидкость вскипает во всем занимаемом ею объеме.
В зависимости от плотности теплового потока, подводимого к жидкости от поверхности нагрева, на последней возникают отдельные паровые пузыри (пузырьковое кипение) или образуется сплошной слой пара (пленочное кипение). При пузырьковом кипении жидкость непосредственно омывает поверхность нагрева, причем ее пограничный слой интенсивно разрушается (турбулизуется) возникающими паровыми пузырями. Кроме того, всплывающие пузыри увлекают из пристенного слоя в ядро потока присоединенную массу перегретой жидкости, что создает интенсивный перенос теплоты от поверхности нагрева к общей массе кипящей жидкости. Следствием этого является высокая интенсивность теплоотдачи при пузырьковом кипении, возрастающая с увеличением числа действующих центров парообразования и количества образующегося пара.
При пленочном кипении жидкость отделена от поверхности нагрева слоем пара, с внешней стороны которого время от времени отрываются и всплывают крупные пузыри. Вследствие относительно малой теплопроводности парового слоя интенсивность теплоотдачи при пленочном кипении существенно меньше, чем при пузырьковом.
Возникновение того или иного вида кипения определяется плотностью теплового потока у поверхности нагрева, ее физическими свойствами (в частности смачиваемостью), физическими свойствами жидкости и гидродинамическим режимом потока в целом. Таким образом приходится говорить о существовании двух критических плотностях теплового потока. Первая критическая плотность теплового потока – при которой происходит переход от пузырькового кипения к пленочному, вторая – при которой происходит разрушение сплошного парового слоя и восстановление пузырькового режима кипения. В области значений плотности теплового потока, лежащих между двумя этими критическими значениями возможно устойчивое существование обоих режимов кипения или даже их длительное совместное сосуществование на разных частях одной и той же поверхности нагрева.
Паровая пленка обычно возникает в отдельных местах поверхности нагрева при достижении значений теплового потока выше критического и далее с конечной скоростью распространяется по всей поверхности нагрева. Аналогично при снижении теплового потока до значений меньше критического, происходят локальные разрушения пленки с последующим распространением пузырькового кипения на всю поверхность нагрева.
На поверхностях нагрева, обедненных центрами парообразования, процесс кипения имеет нестабильный характер, а интенсивность теплообмена колеблется между условиями конвекции однофазного потока и развитого пузырькового кипения. При этом возможен непосредственный переход от однофазной конвекции жидкости к режиму пленочного кипения.
Изучение условий, при которых возникают различные режимы кипения необходимо для расчета теплообменников, используемых в качестве испарителей. При появлении пленочного режима кипения эффективность работы испарителя падает и температура охлаждаемой среды на выходе из теплообменника оказывается выше заданной. Поэтому при расчете и подборе таких аппаратов очень важным является определение плотности тепловых потоков между двумя средами.
Конденсация представляет собой процесс перехода пара (газа) в жидкое или твердое состояние (фазовый переход первого рода). Конденсация пара часто встречается на практике. В конденсаторах паровых турбин пар конденсируется на охлаждаемых трубах; конденсация пара осуществляется в опреснительных установках и многочисленных теплообменных аппаратах. Выделение при фазовом превращении теплоты неразрывно связывает процесс конденсации пара с теплообменом. Процесс конденсации возможен только при докритических состояниях газа (пара) и может быть осуществлен путем его охлаждения или в результате такого сжатия, чтобы при достигнутых значениях температуры и давления конденсированная фаза была термодинамически более устойчивой, чем газообразная. Если при этом температура и давление больше их значений, соответствующих тройной точке для данного вещества, то образуется жидкая конденсированная фаза, если меньше — пар переходит в твердое состояние.
Конденсация может происходить в объеме пара, так и на охлаждаемой поверхности теплообмена. В первом случае образование конденсированной фазы может происходить самопроизвольно при значительном переохлаждении пара относительно температуры насыщения и на холодных жидких или твердых частицах, вводимых в пар. В энергетике, во многих других областях техники и промышленности чаще приходится иметь дело с конденсацией пара в жидкое состояние на охлаждаемых поверхностях теплообмена.
Конденсация насыщенного или перегретого пара на твердой поверхности теплообмена происходит, если температура поверхности меньше температуры насыщения при данном давлении. На поверхности может образоваться пленка конденсата с толщиной, намного превышающей расстояние эффективного действия межмолекулярных сил. В ряде случаев поверхность тела может быть покрыта отдельными каплями конденсата. Первый вид конденсации, когда жидкая конденсированная фаза образуется на поверхности теплообмена в виде устойчивой пленки, называется пленочной конденсацией, а второй — когда происходит образование капель — капельной. Пленочная конденсация имеет место, если конденсат смачивает данную поверхность теплообмена. Если же конденсат не смачивает поверхность, то происходит капельная конденсация. Смачиваемость обычно характеризуют краевым углом θ, образованным поверхностью жидкости и поверхностью твердого тела, граничащих с некоторой третьей средой — в данном случае с паром.