
- •Эпиграф
- •Введение
- •Классификация биологических наук
- •Основные методы биологических исследований
- •Глава I общая характеристика жизни
- •Основные признаки и критерии живого
- •1.2. Уровни организации живого
- •1.3. Жизнь как особое природное и космическое явление
- •1.4. Поля биологических объектов
- •1.5. Биосоциальная природа человека
- •Неканонические вирусы (субвирусные агенты).
- •2.2. Прионы
- •2.3 Клеточные формы жизни Клеточная теория и ее значение для медицины
- •Основные положения клеточной теории т. Шванна:
- •Основые положения современной клеточной теории:
- •Значение клеточной теории для медицыны
- •3.2. Основные структурные компоненты эукариотической клетки
- •Цитоплазма Цитоплазма – обязательная часть клетки, заключенная между плазматической мембранной и ядром. Представлена гиалоплазмой с находящимися в ней органоидами и включениями
- •Включения
- •Органоиды цитоплазмы
- •Краткая характеристика органоидов
- •Глава 4 химическая организация клетки
- •4.1. Основные химические элементы клетки и их значение для жизнидеятольности организмов
- •4.2. Химические вещества клетки
- •4.2.1. Неорганические соединения: вода и минеральные соли вода, ее роль в клетке и организме
- •Биологическая роль н2о
- •Минеральные соли
- •Органические соединения
- •Углеводы
- •Функции углеводов:
- •Пластическая (строительная):
- •Функции жиров:
- •Строение и функции белков
- •Глава 5 обмен веществ (метаболизм) и энергии в клетке клеточные мембраны, их строение и функции
- •5.1. Клетка как открытая система. Ассимиляция и диссимиляция
- •5.2. Поток энергии в клетке
- •5.3. Этапы энергетического обмена (аэробного дыхания)
- •Суммарное уравнение кислородного этапа
- •1440 (40·36) Аккумулируется в атф
- •1160 КДж выделяются в виде тепла
- •5.4. Клеточные мембраны, их строение и функции
- •Плазматическая мембрана, или плазмалемма.
- •Свойства и функции плазмалеммы
- •Глава 6 Ядро. Морфология хромосом. Кариотип человека
- •6.1. Строение и функции ядра
- •Ядерно - цитоплазматическое взаимодействие
- •Структура интерфазного ядра
- •Хромосомы
- •Денверская классификация хромосом человека
- •Глава 7 характеристика нуклеиновых кислот Доказательства генетической роли днк
- •Структура нуклеиновых кислот
- •Дезоксирибонуклеиновая кислота (днк)
- •Видовая специфичность днк
- •Структурные уровни днк
- •Основными свойствами днк являются её способности к репликации и репарации Репликация днк
- •Репарация днк
- •Рибонуклеиновые кислоты
- •Аденозинтрифосфорная кислота (атф)
- •Глава 8 строение, свойства и функции генов.
- •8.1. Ген как дискретная единица наследственности
- •8.2. Ген как единица генетической информации. Генетический код.
- •Свойства генетического кода:
- •Универсальность генетического кода свидетельствует о единстве происхождения всех живых организмов
- •Структурно - функциональная организация гена Молекулярная биология гена
- •Структура генов прокариот
- •Структура генов эукариот
- •Структура генов вирусов
- •Функционально – генетическая классификация генов
- •Современное состояние теории гена
- •Глава 9 поток генетической информации в клетке. Регуляция экспрессии генов
- •9.1. Центральная догма (основной постулат) молекулярной биологии
- •Днк иРнк белок
- •9.2 Основные этапы экспрессии генов
- •9.2.3 Процессинг как промежуточный этап экспрессии гена у эукариот
- •9.3 Трансляция
- •9.5. Регуляция экспрессии генов
- •9.5.1. Регуляция экспрессии генов у прокариот
- •9.6. Регуляция экспрессии генов у эукариот
- •9.6.1. Контроль на уровне транскрипции
- •Глава 10. Смотри (Ващук а.А. Клеточный цыкл)
Днк иРнк белок
РЕПЛИКАЦИЯ
Рис…..Современная схема центральной догмы биологии
Из приведенной схемы видно, что генетическая информация заключенная в нуклеиновой кислоте может передаваться лишь в направлении нуклеиновая кислота → белок. Передача информации в обратном направлении – от белка к нуклеиновой кислоте – невозможна.
В потоке биологической информации участвует ДНК хромосом, молекулы иРНК, переносящие информацию в цитоплазму, цитоплазматический аппарат трансляции (рибосомы и полисомы, тРНК, ферменты).
На завершающем этапе потока информации в клетке полипептиды, синтезированные на рибосомах, преобретают вторичную, третичную, четвертичную структуру и используются в качестве ферментов, строительных блоков, антител и др. (рис 9.2.)
Рис. 9.2. Поток биологической информации
в клетке
Благодаря потоку информации клетка приобретает характерную для нее морфофункциональную организацию, поддерживает ее во времени и передает ряду поколений.
Передача качественно полноценной информации в ряду поколений обеспечивается путем воспроизведения (репликации идентичных двойных спиралей ДНК), а использование этой информации для организации клеточных функций, путем биосинтеза белка в результате экспрессии генов.
9.2 Основные этапы экспрессии генов
(реализации генетической информации)
Экспрессия генов – совокупность биохимических процессов, в результате проходит преобразование генетической информации, представленной в последовательности нуклеотидов ДНК, в структуру молекулярных, а затем в последовательность аминокислот в молекуле белка. Реакции синтеза иРНК и белка, осуществляющая по матрицам (ДНК и РНК соответственно).Поэтому они получили название реакций матричного синтеза.
Р
Транскрипция
Трансляция
9.2.1 Транскрипция – процесс перенесения (переписывания) генетической информации сДНК на РНК. Матрицей для синтеза РНК служит только одна из двух цепей ДНК, так называемая кодогенная или матричная (она же смысловая) цепь ДНК. Транскрипций происходит не на всей молекуле ДНК, а лишь на участке, отвечающему определенному гену. В процессе транскрипции образуются РНК всех трех типов – информационная (матричная), рибосомальная, транспортная.
Транскрипция состоит из множества молекулярных процессов, которые условно разделяют на этапы: инициация, элонгация, терминация.
Инициация транскрипции – начало синтеза РНК, регулируется специфическими белками, (запуск транскрипции) активность которых зависит от метаболических процессов и нужд клетки.
Инициирует процесс транскрипции фермент РНК-полимерация, которая связывается с промоторным участком ДНК, а также это обеспечивает синтез РНК.
Промоторы прокариот и эукариот содержит короткие универсальные последовательности нуклеотидов, которые распознаются ДНК-полимеразами и служат местом их присоединения. После присоединения к промотору РНК-полимераза раскручивает прилежащий виток спирали ДНК. Фермент геликаза разрывает водородные связи между азотистыми основаниями, параллельных цепей ДНК они в этом месте расходятся. На одной из них (кодогенной) РНК-полимераза осуществляет синтез РНК по принципу элонгации (рис. …..).
Рис. …. Схема синтеза мРНК
Матрицей для транскрипции мРНК служит кодогенная цепь ДНК, обращенная к ферменту своим 3-концом
Элонгация – последовательное присоединение свободных нуклеотидов к кодогенной цепи ДНК по принципу комплементарности (А-У, Г-Ц) и соединение их в единую цепь при помощи РНК-полимеразы в полирибонуклеиновою.
Процесс элонгации требует присутствия ионов Mg2+ или Mn2+. Транскрипцию катализируют три разных типа полимераз. Это больше ферменты с четвертичной структурой. Первый тип синтезирует больше рибосомные РНК (рРНК), второй – транскрибирует гены, на которых закодированы полипептиды (образуется иРНК); третий синтезирует тРНК и малую рРНК.
Терминация – завершение синтеза РНК в участке-терминаторе, который узнаётся РНК полимеразой при участии особых белков факторов-терминации. В этом участке ДНК-полимераза отделяется от матрицы ДНК от вновь синтезированной РНК. Фрагмент молекулы ДНК, который находится между промотором и терминации образует единую транскрипцин - транскриптон.
В результате процесса транскрипции синтезируются разные виды РНК. Эти молекулы для своей функциональной активности в большинстве случаев проходят этап, тех или иных кодификационных изменений. Этап созревания РНК, в процессе которого первичный РНК-транскрип (про-РНК) превращается в молекулу функционально активной зрелой РНК получил название процессинга.