
- •Эпиграф
- •Введение
- •Классификация биологических наук
- •Основные методы биологических исследований
- •Глава I общая характеристика жизни
- •Основные признаки и критерии живого
- •1.2. Уровни организации живого
- •1.3. Жизнь как особое природное и космическое явление
- •1.4. Поля биологических объектов
- •1.5. Биосоциальная природа человека
- •Неканонические вирусы (субвирусные агенты).
- •2.2. Прионы
- •2.3 Клеточные формы жизни Клеточная теория и ее значение для медицины
- •Основные положения клеточной теории т. Шванна:
- •Основые положения современной клеточной теории:
- •Значение клеточной теории для медицыны
- •3.2. Основные структурные компоненты эукариотической клетки
- •Цитоплазма Цитоплазма – обязательная часть клетки, заключенная между плазматической мембранной и ядром. Представлена гиалоплазмой с находящимися в ней органоидами и включениями
- •Включения
- •Органоиды цитоплазмы
- •Краткая характеристика органоидов
- •Глава 4 химическая организация клетки
- •4.1. Основные химические элементы клетки и их значение для жизнидеятольности организмов
- •4.2. Химические вещества клетки
- •4.2.1. Неорганические соединения: вода и минеральные соли вода, ее роль в клетке и организме
- •Биологическая роль н2о
- •Минеральные соли
- •Органические соединения
- •Углеводы
- •Функции углеводов:
- •Пластическая (строительная):
- •Функции жиров:
- •Строение и функции белков
- •Глава 5 обмен веществ (метаболизм) и энергии в клетке клеточные мембраны, их строение и функции
- •5.1. Клетка как открытая система. Ассимиляция и диссимиляция
- •5.2. Поток энергии в клетке
- •5.3. Этапы энергетического обмена (аэробного дыхания)
- •Суммарное уравнение кислородного этапа
- •1440 (40·36) Аккумулируется в атф
- •1160 КДж выделяются в виде тепла
- •5.4. Клеточные мембраны, их строение и функции
- •Плазматическая мембрана, или плазмалемма.
- •Свойства и функции плазмалеммы
- •Глава 6 Ядро. Морфология хромосом. Кариотип человека
- •6.1. Строение и функции ядра
- •Ядерно - цитоплазматическое взаимодействие
- •Структура интерфазного ядра
- •Хромосомы
- •Денверская классификация хромосом человека
- •Глава 7 характеристика нуклеиновых кислот Доказательства генетической роли днк
- •Структура нуклеиновых кислот
- •Дезоксирибонуклеиновая кислота (днк)
- •Видовая специфичность днк
- •Структурные уровни днк
- •Основными свойствами днк являются её способности к репликации и репарации Репликация днк
- •Репарация днк
- •Рибонуклеиновые кислоты
- •Аденозинтрифосфорная кислота (атф)
- •Глава 8 строение, свойства и функции генов.
- •8.1. Ген как дискретная единица наследственности
- •8.2. Ген как единица генетической информации. Генетический код.
- •Свойства генетического кода:
- •Универсальность генетического кода свидетельствует о единстве происхождения всех живых организмов
- •Структурно - функциональная организация гена Молекулярная биология гена
- •Структура генов прокариот
- •Структура генов эукариот
- •Структура генов вирусов
- •Функционально – генетическая классификация генов
- •Современное состояние теории гена
- •Глава 9 поток генетической информации в клетке. Регуляция экспрессии генов
- •9.1. Центральная догма (основной постулат) молекулярной биологии
- •Днк иРнк белок
- •9.2 Основные этапы экспрессии генов
- •9.2.3 Процессинг как промежуточный этап экспрессии гена у эукариот
- •9.3 Трансляция
- •9.5. Регуляция экспрессии генов
- •9.5.1. Регуляция экспрессии генов у прокариот
- •9.6. Регуляция экспрессии генов у эукариот
- •9.6.1. Контроль на уровне транскрипции
- •Глава 10. Смотри (Ващук а.А. Клеточный цыкл)
Структура генов вирусов
Вирусы имеют структуру гена, отражающую генетическую структуру клетки - хозяина. Так, гены бактериофагов собраны в опероны и не имеют интронов, а вирусы эукариот имеют интроны.
Характерная особенность вирусных геномов – это явление «перекрывающихся» генов («ген в гене»). В «перекрывающихся» генах каждый нуклеотид принадлежит одному кодону, т.е. имеются разные рамки считывание генетической информации с одной и той же нуклеотидной последовательности. Так, у фага ф Х 174 имеется участок молекулы ДНК, который входит в состав сразу трех генов.
Но соответствующие этим генам последовательности нуклеотидов прочитывается каждая в своей системе отсчета. Поэтому нельзя говорить о «перекрывании» кода.
Такая организация генетического материала («ген в гене») расширяет информационные возможности сравнительно небольшого по величине генома вирусов. Функционирование генетического материала вирусов происходит по-разному, в зависимости от структуры вируса, но всегда с помощью ферментативной системы в клетке хозяина. Различные способы организации генов у вирусов, про- и эукариотов представлены на рис 8.2.
Функционально – генетическая классификация генов
Существует несколько классификаций генов. Так, например, выделяют аллельные и неаллельные гены, летальные и полулетальные, гены «домашнего хозяйства», «гены роскоши» и т.д.
Гены «домашнего хозяйства» - набор активных генов, необходимых для функционирования всех клеток организма, независимо от типа ткани, периода развития организма. Эти гены кодируют ферменты транскрипции, синтеза АТФ, репликации и репарации ДНК и др.
Гены «роскоши» имеют избирательную активность. Их функционирование специфично и зависит от типа ткани, периода развития организма, полученных внешних или внутренних сигналов.
Исходя из современных представлений о гене как функционально неделимой единице наследственного материала и системной организации генотипа, все гены принципиально можно разделить на две группы: структурные и регуляторные.
Регуляторные гены – кодируют синтез специфических белков, влияющих на функционирование структурных генов таким образом, что в клетках разной тканевой принадлежности синтезируются необходимые белки и в необходимых количествах.
Структурными называются гены, которые несут информацию о первичной структуре белка, рРНК или тРНК. Гены, кодирующие белки, тысячи разновидностей, несут информацию о последовательности аминокислот определенных полипептидов. С этих участков ДНК транскребируется иРНК, которая служит матрицей для синтеза первичной структуры белка.
Гены рРНК (выделяют 4 разновидности) содержат информацию о последовательности нуклеотидов рибосомальных РНК и обуславливают их синтез.
Гены тРНК (более 30 разновидностей) несут информацию о строении транспортных РНК.
Структурные гены, функционирование которых тесно связано со специфическими последовательностями в молекуле ДНК, называемыми регуляторными участками, подразделяются на:
- независимые гены;
- повторяющиеся гены;
- кластеры генов.
Структурными называются гены, кодирующие аминокислотные последовательности структурных и ферментативных белков или последовательности нуклеотидов в молекулах тРНК и рРНК.
Независимые гены – это гены, транскрипция которых не связана с транскрипцией других генов в рамках транскрипционной еденицы. Их активность может, однако, регулироваться экзогенными веществами, например, гормонами.
Повторяющиеся гены присутствуют в хромосоме в виде повторов одного гена. Ген рибосомной 5-S-РНК повторяется много сотен раз, причем повторы располагаются тандемом, т. е. следуя вплотную друг за другом, без промежутков.
Кластеры генов – это локализованные в определенных участках (локусах) хромосомы группы разных структурных генов с родственными функциями. Кластеры тоже часто присутствуют в хромосоме в виде повторов. Например, кластер гистоновых генов повторяется в геноме человека 10-20 раз, обазуя тандемную групу повторов.
Рис.8.3. Кластер гистоновых генов
За редким исключением кластеры транскрибируются как одно целое – в виде одной длинной пре-мРнк, содержащей информацию про все 5 гистоновых белков. Это ускоряет синтез гистоновых белков, которые принимают участие в формировании нуклеосомной структуры хроматина.
Существуют также сложные кластеры генов, которые могут кодировать длинные полипептиды с несколькими ферментативными активностями. Например, один из генов NeuraSpora grassa кодирует полипептид с молекулярной масой 150000 дальтон, который отвечает за 5 последовательных этапов в биосинтезе ароматическиз аминокислот. Полагают, что полифункциональные белки имеют несколько доменов – конформационно ограниченных полуавтономных образований в полипептидной цепи, выполняющих специфические функции. Открытие полуфункциональных белков дало основание полагать, что они являются одним из механизмов плейотропного действия одного гена на формирование нескольких признаков.
В кодирующей последовательности этих генов могут вклиниватся некодирующие, называемые интронами. Кроме того между генами могут находится участки спейсерной, и сателитной и спейсерной ДНК (рис.8.4).
Структурная организация нуклеотидных последовательностей (генов) в ДНК.
Спейсерная ДНК располагается между генами и не всегда транскрибируется. Иногда участок такой ДНК между генами (так называемый спейсер) содержит какую-то информацию, относящуюся к регуляции и инициации транскрипции, но он может представлять собой и просто короткие повторяющиеся последовательности избыточной ДНК, роль которой остается неясной.
Сателитная ДНК содержит большое количество групп повторяющихся нуклеотидов, которые не имеют смысла и не транскрибируются. Эта ДНК часто располагается в области гетерохроматина центромер митотических хромосом. Одиночные гены среди сателитной ДНК имеет регулирующие и усиливающие действие на структурные гены.
Большой теоритический и практический интерес для молекулярной биологии и медицинской генетики представляет микро- и минисателитные ДНК.
Микросателитная ДНК – короткие тандемные повторы из 2-6, (чаще из 2-4) нуклеотидов (они получили название STR). Наиболее распространенным являются нуклеотидные ЦА- повторы. Количество повторов может существенно различатся у разных людей. Микросателиты находятся преимущественно в некоторых участках ДНК и насследуются по законам Менделя. Ребенок получают одну хромосому от матери, с определенным количеством повторов, другую от отца - с другим количеством повторов. Если рядом с геном ответственным за моногенное заболевание, или внутри гена расположен такой кластер микросателитов, то маркером патологического гена может быть определенное количество повторов по длине кластера. Эта особенность используется при непрямой диагностиге генных болезней.
Минисателитная ДНК – тандемные повторы из 15-100 нуклеотидов. Они получили название VNTR – тандемные повторы, вариабельные по количеству. Длина этих локусов также существено вариабельна у разных людей и может быть маркером (меткой) патологического гена.
Микро- и макросателитные ДНК используют:
Для диагностики генных болезней;
В судебно-медицинской экспертизе для идентификации личностей;
Для установления отцовства и других ситуациях.
На ряду со структурными и регуляторными последовательностями, повторяющимися последовательностями, функции которых неизвестны обнаружены мигрирующие нуклеотидные последовательности (транспозоны, мобильные гены), а также так называемые пссевдогены у эукариот.
Псевдогены – представляют собой копии известных генов, но лишенные интронов или инактивированные мутациями и поэтому не функционирующие. В частности, они имеют поврежденную кодонами рамку считывания генетической информации.
Транспозоны — структурно и генетически дискретные фрагменты ДНК, способные перемещаться от одной молекулы ДНК к другой. Впервые предсказаны Б.Мак-Клинток (рис. 8) в конце 40-х годов XX века на основе генетических экспериментов на кукурудзе. Изучая природу окраски зерен кукурудзы она сделала предположение, что существуют так званые мобильные („прыгающее”) гены, которые могут перемещаться по геному клетки. Пребывая по соседству с геном ответственным за пигментацию зерен кукурудзы мобильные гены блокируют его работу. В дальнейшем транспозоны были выявлены у бактерий и было установлено, что они ответственны за устойчивость бактерий к различным токсическим соединениям.
Рис. 8.5. Барбара Мак- Клинток Впервые предсказала о существовании мобильных («прыгающих») генов, способных перемещаться по геному клеток.
Мобильные генетические элементы выполняют такие функции:
кодируют белки, ответственные за их перемещение и репликацию.
вызывают многие наследственные изменения в клетках, вследствии чего образуется новый генетический материал.
приводит к образованию раковых клеток.
встраиваясь в различные участки хромосом, они инактивируют или усиливают экспрессию клеточных генов,
является важным фактором биологической эволюции.