
- •Эпиграф
- •Введение
- •Классификация биологических наук
- •Основные методы биологических исследований
- •Глава I общая характеристика жизни
- •Основные признаки и критерии живого
- •1.2. Уровни организации живого
- •1.3. Жизнь как особое природное и космическое явление
- •1.4. Поля биологических объектов
- •1.5. Биосоциальная природа человека
- •Неканонические вирусы (субвирусные агенты).
- •2.2. Прионы
- •2.3 Клеточные формы жизни Клеточная теория и ее значение для медицины
- •Основные положения клеточной теории т. Шванна:
- •Основые положения современной клеточной теории:
- •Значение клеточной теории для медицыны
- •3.2. Основные структурные компоненты эукариотической клетки
- •Цитоплазма Цитоплазма – обязательная часть клетки, заключенная между плазматической мембранной и ядром. Представлена гиалоплазмой с находящимися в ней органоидами и включениями
- •Включения
- •Органоиды цитоплазмы
- •Краткая характеристика органоидов
- •Глава 4 химическая организация клетки
- •4.1. Основные химические элементы клетки и их значение для жизнидеятольности организмов
- •4.2. Химические вещества клетки
- •4.2.1. Неорганические соединения: вода и минеральные соли вода, ее роль в клетке и организме
- •Биологическая роль н2о
- •Минеральные соли
- •Органические соединения
- •Углеводы
- •Функции углеводов:
- •Пластическая (строительная):
- •Функции жиров:
- •Строение и функции белков
- •Глава 5 обмен веществ (метаболизм) и энергии в клетке клеточные мембраны, их строение и функции
- •5.1. Клетка как открытая система. Ассимиляция и диссимиляция
- •5.2. Поток энергии в клетке
- •5.3. Этапы энергетического обмена (аэробного дыхания)
- •Суммарное уравнение кислородного этапа
- •1440 (40·36) Аккумулируется в атф
- •1160 КДж выделяются в виде тепла
- •5.4. Клеточные мембраны, их строение и функции
- •Плазматическая мембрана, или плазмалемма.
- •Свойства и функции плазмалеммы
- •Глава 6 Ядро. Морфология хромосом. Кариотип человека
- •6.1. Строение и функции ядра
- •Ядерно - цитоплазматическое взаимодействие
- •Структура интерфазного ядра
- •Хромосомы
- •Денверская классификация хромосом человека
- •Глава 7 характеристика нуклеиновых кислот Доказательства генетической роли днк
- •Структура нуклеиновых кислот
- •Дезоксирибонуклеиновая кислота (днк)
- •Видовая специфичность днк
- •Структурные уровни днк
- •Основными свойствами днк являются её способности к репликации и репарации Репликация днк
- •Репарация днк
- •Рибонуклеиновые кислоты
- •Аденозинтрифосфорная кислота (атф)
- •Глава 8 строение, свойства и функции генов.
- •8.1. Ген как дискретная единица наследственности
- •8.2. Ген как единица генетической информации. Генетический код.
- •Свойства генетического кода:
- •Универсальность генетического кода свидетельствует о единстве происхождения всех живых организмов
- •Структурно - функциональная организация гена Молекулярная биология гена
- •Структура генов прокариот
- •Структура генов эукариот
- •Структура генов вирусов
- •Функционально – генетическая классификация генов
- •Современное состояние теории гена
- •Глава 9 поток генетической информации в клетке. Регуляция экспрессии генов
- •9.1. Центральная догма (основной постулат) молекулярной биологии
- •Днк иРнк белок
- •9.2 Основные этапы экспрессии генов
- •9.2.3 Процессинг как промежуточный этап экспрессии гена у эукариот
- •9.3 Трансляция
- •9.5. Регуляция экспрессии генов
- •9.5.1. Регуляция экспрессии генов у прокариот
- •9.6. Регуляция экспрессии генов у эукариот
- •9.6.1. Контроль на уровне транскрипции
- •Глава 10. Смотри (Ващук а.А. Клеточный цыкл)
Основными свойствами днк являются её способности к репликации и репарации Репликация днк
Репликация (ауторепродукция, аутосинтез, редупликация) – удвоение молекул ДНК при участии специальных ферментов. Она происходит перед каждым делением ядра в S-периоде интерфазы. Редупликация обеспечивает точную передачу генетической информации, заключенной в молекулах ДНК, от поколения к поколению.
Гигантские молекулы ДНК эукариот имеют много участков репликации – репликонов, тогда как относительно небольшие кольцевые молекулы ДНК прокариот представляют каждая один репликон. Полирепликативный характер огромных молекул ДНК эукариот обеспечивает возможность репликации без одновременной деспирализации всей молекулы. В остальном в общих чертах процессы репликации прокариот и эукариот весьма похожи.
Процесс репликации ДНК в репликоне происходит в 3 этапа, в которых участвуют несколько разных ферментов.
Первый этап начинается репликация ДНК с локального участка, где двойная спираль ДНК (под действием ферментов ДНК-геликазы, ДНК-топоизомеразы и др.) раскручивается, разрываются водородные связи и цепи расходятся. В результате образуется структура, названная репликативной вилкой (рис.7.6).
Рис.7.6. Схема репликации ДНК
На втором этапе происходит типичный матричный синтез. К образовавшимся свободным связям присоединяются по принципу комлементарности (А-Т, Г-Ц) свободные нуклеотиды. Этот процесс идет вдоль всей молекулы ДНК. У каждой дочерней молекулы ДНК одна нить происходит от материнской молекулы, а другая является вновь синтезированной. Такая модель репликации получила название полуконсервативной. Этот этап осуществляет фермент ДНК-полимераза (известно несколько ее разновидностей).
На двух материнских нитях синтез происходит неодинаково. Посколько синтез возможен только в направлении 5′ - 3′, то на одной нити идет быстрый синтез, а на другой нити – медленный, короткими фрагментами (1000-2000 нуклеотидов). В честь открывшего из Р.Оказаки они называются фрагментами Оказаки. Свободный 3′- конец, необходимый для начала синтеза фрагмента Оказаки, обеспечивает РНК-праймер, синтезируемая при помощи особой РНК-полимеразы – праймазы. После выполнения своей функции РНК-праймер удаляется, а ДНК-лигаза соединяет фрагменты Оказаки и восстанавливает первичную структуру ДНК.
На третьем этапе происходит закручивание спирали и восстановление вторичной структуры ДНК при помощи ДНК-гиразы.
Большинство ферментов, участвующих в репликации ДНК, работают в мультиэнзимном комплексе, связанном с ДНК. Это позволяет осуществлять репликацию с огромной скоростью (у прокариот – около 3000 пар нуклеотидов (п.н.) в секунду, у эукариот – 100-300 п.н. в секунду).
Две новые молекулы ДНК представляют собой точные копии исходной молекулы (рис.7.7)
Рис.7.7 А – репликация ДНК; Б- синтез ДНК
Репарация днк
Репарация (от лат. reparation - восстановление) – процесс восстановления первичной структуры ДНК, поврежденной в результате воздействия мутагенных факторов.
В клетках существуют различные «ремонтные» системы, устраняющие повреждения ДНК, вызванные облучением или химическими факторами. Обычно рассматривают три основных вида репарации:
– фоторепарацию (фотореактивацию);
– эксцизионную репарацию;
– пострепликативную репарацию.
Лучше всего изучена репарация повреждений, вызванных ультрафиолетовыми лучами. При облучении ультрафиолетом между соседними пиримидиновыми основаниями одной цепи ДНК возникают димеры. Чаще всего димер Т-Т, т.е. вместо водородных связей между Т и А двух нуклеотидных цепей образуются связи Т-Т внутри одной цепи (рис.8).
Фоторепарация происходит при воздействии видимого света. При этом фермент ДНК-фотолигаза разделяет димер на мономеры и опять восстанавливает водородные связи Т-А межу комплементарными цепями
Эксцизионная и пострепликативная репарация не зависят от света, и поэтому её называют темновой репарацией.
Эксцизионная репарация заключается в узнавании повреждения ДНК, вырезании (эксцизии) поврежденного участка в синтезе и вставке нового фрагмента.
Она протекает в 4 стадии:
Эндонуклеаза узнает поврежденный участок и рядом с ним разрывает нить ДНК.
Экзонуклеаза «вырезает» поврежденный участок
ДНК-полимераза на основе неповрежденной цепи, которая служит матрицей, за принципом комплементарности синтезирует новый фрагмент.
Лигаза соединяет свободные концы старой части цепи с концами вновь синтезированного фрагмента.
Рис 7.8. Репаративные процессы. А. Эксцизионная репарация (на примере Escherichiaсoli). Б. Пострепликативная репарация. В представленном при¬мере разрыв в одной молекуле ДНК закрывается путем SOS-репарации, при¬чем возникает мутация (М.). Во второй молекуле ДНК разрыв может быть ; тоже заполнен путем SOS-репарации или закрыт путем рекомбинации с по-следующимропаративным синтезом, при котором матрицей служит интактная цепь ДНК. (По Böhme, Adler, с изменениями.)
Пострепликативная репарация включается в тех случаях, когда повреждения в ДНК, возникшие до её репликации, не устраняются.
Если димеры не будут устранены, то соответствующие основания не смогут выполнять роль матрицы и в этих местах во вновь синтезированной ДНК окажутся пропуски (разрывы). Путем обмена фрагментами (рекомбинации) между двумя двойными цепями ДНК-продуктами репликации – возможно образование одной нормальной двойной цепи (пострепликативная репарация).
Если повреждения на ДНК так тесно лежат друг возле друга, что пропуски перекрываются, тогда для заполнения пропусков включается другая «ремонтная» система – SOS репарация, способная синтезировать новую цепь ДНК на дефективной матрице. При этой системе репликации часто бывают ошибки и возникают мутации.
Рипаративные системы клетки играют важную роль в сохранении генетического гомеостаза, структурной и функциональной стабильности живых систем.