Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
коллоквиум.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
3.08 Mб
Скачать

Логарифмическая производная

Если производная от логарифмов – это такая сладкая музыка, то возникает вопрос, а нельзя ли в некоторых случаях организовать логарифм искусственно? Можно! И даже нужно.

Пример 11

Найти производную функции 

Похожие примеры мы недавно рассмотрели. Что делать? Можно последовательно применить правило дифференцирования частного, а потом правило дифференцирования произведения. Недостаток способа состоит в том, что получится огромная трехэтажная дробь, с которой совсем не хочется иметь дела.

Но в теории и практике есть такая замечательная вещь, как логарифмическая производная. Логарифмы можно организовать искусственно, «навесив» их на обе части:

Теперь нужно максимально «развалить» логарифм правой части (формулы перед глазами?). Я распишу этот процесс очень подробно:

Собственно приступаем к дифференцированию.  Заключаем под штрих обе части:

Производная правой части достаточно простая, её я комментировать не буду, поскольку если вы читаете этот текст, то должны уверенно с ней справиться.

Как быть с левой частью?

В левой части у нас сложная функция. Предвижу вопрос: «Почему, там же одна буковка «игрек» под логарифмом?».

Дело в том, что эта «одна буковка игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (если не очень понятно, обратитесь к статье Производная от функции, заданной неявно). Поэтому логарифм – это внешняя функция, а «игрек» – внутренняя функция. И мы используем правило дифференцирования сложной функции  :

В левой части как по мановению волшебной палочки у нас «нарисовалась» производная  .  Далее по правилу пропорции перекидываем «игрек» из знаменателя левой части  наверх правой части:

А теперь вспоминаем, о каком таком «игреке»-функции мы рассуждали при дифференцировании? Смотрим на условие: 

Окончательный ответ:

Пример 12

Найти производную функции 

Это пример для самостоятельного решения. Образец оформления примера данного типа в конце урока.

С помощью логарифмической производной можно было решить любой из примеров №№4-7, другое дело, что там функции проще, и, может быть, использование логарифмической производной не слишком-то и оправдано.

Производные и дифференциалы высших порядков

Пусть производная некоторой функции f дифференцируема. Тогда производная от производной этой функции называется второй производнойфункции f и обозначается f". Таким образом,

f"(x) = (f'(x))'.

Если дифференцируема (n - 1)-я производная функции f, то ее n-й производной называется производная от (n - 1)-й производной функции f и обозначается f(n). Итак,

f(n)(x) = (f(n-1)(x))',   n ϵ N,   f(0)(x) = f(x).

Число n называется порядком производной.

Дифференциалом n-го порядка функции f называется дифференциал от дифференциала (n - 1)-го порядка этой же функции. Таким образом,

dnf(x) = d(dn-1f(x)),   d0f(x) = f(x),   n ϵ N.

Если x - независимая переменная, то

dx = const   и   d2x = d3x = ... = dnx = 0.

В этом случае справедлива формула

dnf(x) = f(n)(x)(dx)n.

Производные n-го порядка от основных элементарных функций

Справедливы формулы

Формула Лейбница

Если u и v - n-кратно дифференцируемые функции, то

Производные n-го порядка вектор-функции, комплекснозначной и матричной функций

Если компоненты   n-кратно дифференцируемы, то  .

Аналогично для комплекснозначной функции f и матричной функции A имеем формулы:

f(n)(x) = u(n)(x) + iv(n)(x);   dnf(x) = dnu(x) + idnv(x);

Лейбница формула

        формула, выражающая производную n-го порядка (см. Дифференциальное исчисление) от произведения двух функций через производные сомножителей:

        

        .