Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Щитовидная железа. Фундаментальные аспекты. Кубарко А.И

..pdf
Скачиваний:
501
Добавлен:
14.06.2014
Размер:
22.57 Mб
Скачать

Анатомо-гистологическая характеристика

21

Рис. 1.18. Регионарные лимфатические узлы щитовидной железы.

1.Предгортанные лимфатические узлы;

2.претрахеальные лимфатические узлы;

3.паратрахеальные лимфатические узлы;

4.латеральные лимфатические узлы.

1.6Иннервациящитовиднойжелезы

Щитовидная железа получает симпатическую иннервацию из верхнего, среднего (главным образом) и нижнего шейных узлов симпатического ствола. Щитовидные нервы образуют сплетения вокруг сосудов, подходящих к железе. Считают, что эти нервы выполняют вазомоторную функцию.

В иннервации щитовидной железы участвует также блуждающий нерв, несущий парасимпатические волокна к железе в составе верхнего и нижнего гортанных нервов.

1.7Паращитовидные железы

Увзрослого человека обычно имеется 2 пары паращитовидных желез - верхняя и нижняя (см. рис. 1.19). Однако, недавно проведенное хирургическое исследование материалов 503 аутопсий показало, что 4 паращитовидные

железы присутствовало только в 84% случаев (рис. 1.19), более 4 желез наблюдалось в 13% случаев и 3 железы было идентифицировано в 3% случаев. В случае наличия более 4 желез, большинство из них было либо рудиментарными либо разделенными остатками, расположенными рядом.

Анатомически верхние паращитовидные железы являются наиболее постоянными. Примерно в 80% случаев они располагаются в окружности диаметром 2 см, очерченной на расстоянии 1 см выше места пересечения возвратного гортанного нерва и нижней щитовидной артерии. Верхние паращитовидные железы часто располагаются под шейной фасцией, покрывающей щитовидную железу и подвижно фиксируются над капсулой щитовидной железы. Довольно редко верхние паращитовидные железы

22

Анатомо-гистологическая характеристика

располагаются под капсулой щитовидной железы. С другой стороны, нижние паращитовидные железы, в связи с их миграцией в эмбриогенезе вместе с зачатком вилочковой железы (см. рис. 1.1), характеризуются значительно большей вариабельностью своей анатомической локализации. Примерно в 61% случаев нижние паращитовидные железы локализуются ниже, латеральнее и кзади от нижнего полюса щитовидной железы. Часто нижние щитовидные железы обнаруживаются в толще фиброзных волокон, соединяющих нижний полюс щитовидной железы и верхнюю поверхность вилочковой железы. Приблизительно в 26% случаев нижние щитовидные железы обнаруживаются в шейной части тимуса. В любом случае, с частотой от 2 до 4% нижние паращитовидные железы ассоциированы с вилочковой железой в верхнем средостении. В ряде исследований описываются другие положения паращитовидных желез, однако, к сообщениям, полученным на трупном материале следует относиться критически в связи с трудностью определения прижизненной локализации паращитовидных желез в зафиксированном материале.

Вследствие вариабельности расположения паращитовидных желез, особенно нижней пары, установление их локализации относительно щитовидной железы во время хирургического вмешательства (тиреоидэктомии) требует пристального внимания, В общем случае тактика хирурга должна основываться на следующих положениях: верхние паращитовидные железы располагаются или в предпозвоночной фасции, покрывающей заднюю поверхность щитовидной железы, или собственно в капсуле щитовидной железы. Нижние паращитовидные железы находятся либо ниже нижней щитовидной артерии на задней поверхности щитовидной железы (то есть спереди от фасции, покрывающей щитовидную железу), либо выше нижней щитовидной артерии и, следовательно, вне фасции, покрывающей щитовидную железу. Гораздо реже нижние паращитовидные железы внедрены в толщу самой щитовидной железы.

Анатомо-гистологическая характеристика

23

ГЛАВА 2. ОБРАЗОВАНИЕ, СЕКРЕЦИЯ И ТРАНСПОРТ ГОРМОНОВ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

2.1Метаболизм клеток щитовидной железы

Вданном разделе рассмотрены общие закономерности обмена веществ в клетках щитовидной железы и его тесная зависимость от регуляторного действия тиреотропного гормона передней доли гипофиза, оказывающего разностороннее влияние на функции щитовидной железы.

Изучение метаболизма тироцитов было объектом пристального внимания многих исследователей, которые использовали весь арсенал обычных методов и экспериментальных приемов классической биохимии: исследование in vivo, in situ, перфузируемой щитовидной железы in vitro, культивируемых срезов ткани щитовидной железы, в культуре клеток, гомогенатах ткани и субклеточных фракциях.

Обмен углеводов

Аккумуляция глюкозы клетками щитовидной железы происходит по гексозо-монофосфатному пути (ГМП) и в ходе гликолиза, который завершается включением образующихся ацетильных остатков в составе ацетил-КоА в цикл лимонной кислоты (цикл Кребса). Роль

гексозо-монофосфатного

пути

сравнительно

невелика

в

количественном распределении

внутриклеточного

пула глюкозы,

однако, представляется метаболически значимой как источник восстановленного никотинамидадениндинуклеотидфосфата (НАДФН), который является исключительным донатором восстановительных эквивалентов в сопряженных реакциях окисления (протекающих, например, под действием тиреопероксидазы в ходе синтеза тиреоидных гормонов). Приблизительно 20% клеточного аденозинтрифосфата (АТФ) образуется в ходе реакций субстратного фосфорилирования гликолиза и около 80% приходится на долю процессов окислительного фосфорилирования в митохондриях. Незначительная часть углерода глюкозы в ходе синтетических процессов включается в состав молекул белков, гликогена и липидов.

В щитовидной железе овец были идентифицированы ферменты цикла Кребса: аконитаза, фумараза, изоцитратдегидрогеназа, α- кетоглутаратдегидрогеназа, сукцинатдегидрогеназа и малатдегидрогеназа. Активность изоцитратдегидрогеназы оказалась в прямой зависимости от присутствия НАД+, в том числе в митохондриальной фракции. Активность ферментов цикла Кребса оказалась в пределах 20-50% (по отношению к концентрации K+) в сравнении с соответствующими ферментами печени и была значительно выше в гиперплазированной ткани щитовидной железы, чем в интактной. Сукцинатдегидрогеназа распределена преимущественно в митохондриальном компартменте, а изоцитратдегидрогеназа - в цитозольной фракции. Остальные

Продукция и транспорттиреоидныхгормонов

25

ферменты достаточно равномерно распределены между органелами и растворимой фракцией.

ТТГ активирует поглощение глюкозы путем стимуляции трансмембранного транспорта глюкозы (индуцируя синтез белкапереносчика), а также повышения активности протеинкиназы С. ТТГ также вызывает быструю стимуляцию гексозо-монофосфатного пути окисления глюкозы, меньшее действие оказывает на гликолиз и стимулирует продукцию лактата. Протекание реакций ГМП превращения глюкозы активируется, главным образом, за счет стимуляции использования НАДФН в реакциях окисления (например, при дейодировании йодтирозинов, образовании перекиси водорода Н2О2, йодировании тиреоглобулина и действии глутатион-редуктазы), что повышает концентрацию НАДФ+ и смещает равновесие в реакции гликолиза, катализируемой глицеральдегид-3-фосфатдегидрогеназой. Одновременно, ТТГ повышает концентрацию НАДФН и НАДФ+, стимулируя активность никотинамидадениндинуклеотид-(НАД+)-киназы, а также индуцирует синтез гексокиназы I.

ТТГ стимулирует включение дериватов глюкозы в форме глицерофосфатов в состав липидов клеток щитовидной железы и уменьшает инкорпорацию остатков глюкозы в состав гликогена и структуры белков по неизвестному механизму, возможно, связанному с первичной стимуляцией протеолиза тиреоглобулина и уменьшением внутриклеточного пула предшественников.

Ряд эффектов ТТГ на метаболизм углеводов, возможно, связан с прямой стимуляцией мембранно-связанного фермента аденилатциклазы и сопряженной продукцией циклического аденозинмонофосфата (цАМФ), что подтверждается воспроизведением действия ТТГ на потребление глюкозы, стимуляцией культуры клеток щитовидной железы цАМФ. Влияние ТТГ на метаболизм глюкозы показано также в условиях отсутствия формирования капель коллоида в просвете фолликула, что может служить указанием на отсутствие сопряжения процессов резорбции коллоида с активностью гликолитических процессов.

Действие ТТГ в течение 3-13 часов в условиях in vitro вызывает двукратное увеличение содержания общих мукополисахаридов в клетках ткани щитовидной железы. Однако, эти данные лишь с большим допущением можно экстраполировать к содержанию полисахаридов в интактной ткани железы. Нормальные значения колеблются в пределах около 135 мкг/100 мг ткани, и варьируют при болезни Хашимото - порядка 76 мкг/100 мг ткани и 228 мг/100 мг ткани - при хроническом тиреоидите. Диагностическая значимость этих показателей остается под вопросом.

Сиаловые кислоты (N-ацетилнейраминовые кислоты) распределены в клетке (20%) и в связанном с тиреоглобулином состоянии (80%). Действие тиротропина и пропилтиоурацила вызывает снижение общего содержания сиаловых кислот и повышение их свободной фракции.

26 Продукция и транспорт тиреоидных гормонов

Окислительное фосфорилирование

Клетки щитовидной железы, как и все другие (за известным исключением), содержат митохондрии, в матриксе которых локализуется электронотранспортная система («дыхательная цепь») переноса окислительно-восстановительных эквивалентов от высокоэнергетических субстратов для создания градиента электрохимических потенциалов, энергия которого используется для синтеза АТФ.

Окислительное фосфорилирование в митохондриях тироцитов в обычных условиях является высоко сопряженным и тонко регулируемым процессом, зависящим от внутриклеточной концентрации АТФ и АДФ. Ряд исследователей полагают, что свободные жирные кислоты являются предпочтительным субстратом метаболических процессов в клетках невозбужденной щитовидной железы.

ТТГ увеличивает поглощение кислорода срезами щитовидной железы в течение нескольких минут с момента стимуляции, однако, при этом не оказывает прямого стимулирующего влияния на интенсивность утилизации кислорода клетками щитовидной железы, ТТГ в условиях in vitro (в культивируемых срезах щитовидной железы) стимулирует окисление пирувата и ацетата. Перхлорат, метимазол, пропилтиоурацил, йодид, тиоционат и тиреоидные гормоны не оказывают существенного влияния на интенсивность протекания процессов окислительного фосфорилирования.

Обмен нуклеиновых кислот

Содержание РНК в щитовидных железах лабораторных животных составляет порядка 2 мкг/мг сырой ткани и ДНК - около 2-4 мкг/мг Содержание нуклеиновых кислот отличается значительными межвидовыми различиями, а также изменяется в зависимости от соотношения коллоида, паренхиматозных и стромальных элементов в органе. На долю стромы может приходиться 20-30% от общего объема ткани, коллоид может составлять от 50-60% до очень низкого уровня в гипопластически измененной железе. Таким образом, в зависимости от доли фолликулярных элементов, содержание РНК может возрастать до 6-7 мкг/мг ткани и ДНК - до 16 мкг/мг ткани.

Длительная стимуляция щитовидной железы ТТГ приводит к развитию гипертрофии тироцитов, при этом увеличение общего содержания нуклеиновых кислот вызвано, главным образом, образованием новых клеток. При введении in vivo ТТГ вызывает быстрое (в течение 1 часа) и продолжительное (более 12 часов) усиление процессов синтеза нуклеиновых кислот. ТТГ стимулирует также поглощение предшественников синтеза РНК срезами щитовидной железы и активирует РНК полимеразу; возрастает также поглощение пиримидиновых и пуриновых нуклеотидов и рибозы из инкубационной среды.

Под действием ТТГ возрастает синтез и матричной, и рибосомальной РНК в тироцитах, относительно изменений скорости

Продукцияитранспорттиреоидныхгормонов 27

деградации РНК (то есть периода полуоборота) данных не имеется. ТТГ в условиях in vitro оказывает прямое стимулирующее влияние на активность РНК полимеразы.

Большинство описанных эффектов воспроизводятся стимуляцией щитовидной железы in vitro дибутирил-цАМФ и цАМФ, что свидетельствует об использование циклических мононуклеотидов в качестве вторых посредников в опосредовании этих эффектов ТТГ в тироцитах.

Обмен белков

Действие ТТГ вызывает увеличение скорости поглощения аминокислот изолированными клетками щитовидной железы и стимулирует синтез белка в течение 30 минут - 4 часов с момента стимуляции. В связи с доминирующим эффектом ТТГ на процессы резорбции коллоида, протеолиз тиреоглобулина и перераспределение внутриклеточного пула аминокислот, продемонстрировать результат действия гормона на целую ткань достаточно сложно. Однако, культивирование срезов ткани щитовидной железы в среде инкубации с высоким содержанием лейцина (для исключения эффектов ТТГ на транспорт аминокислот в клетку) показало очевидную стимуляцию синтеза белка как in vitro, так и в изолированных тироцитах. В течение 12-24 часовой стимуляции ТТГ in vivo было показано уменьшение содержания коллоидного белка в связи с выраженной интенсификацией активного гидролиза тиреоглобулина, однако по прекращении хронического опыта содержание белка возрастало в сравнении с интактными животными. Эта реакция имела практически линейную зависимость на протяжении 4-5 недель воздействия и в итоге выразилась в пятикратном увеличении объема железы (у животных), при этом соотношение белок/ДНК не изменилось. Эти данные свидетельствуют о стимуляции пролиферативной активности клеток щитовидной железы под действием ТТГ.

Электронно-микроскопические исследования показали наличие в тироците гигантских ( ± 4 0 рибосомальных единиц) полисом, соединенных мРНК. Именно на них, как полагают, и происходит синтез 2 полипептидных предшественников тиреоглобулина с последующим процессингом в просвете фолликула. Действие ТТГ ускоряет объединение моносом в полисомы, что указывает на прямое влияние ТТГ на процессы трансляции в тироците. Динамика этих процессов может регулироваться фосфорилированием белков рибосомальных субъединиц цАМФ-зависимой фосфокиназой.

Стимуляция тироцитов цАМФ приводит к агрегации рибосом и формированию полисомальных комплексов, что является дополнительным свидетельством в пользу цАМФ-опосредованных эффектов ТТГ на белок-синтетические процессы в тиреоидных клетках. Отсутствие зависимости этого явления от ингибирующего действия актиномицина А указывает на интактность процессов формирования матричной РНК. При некоторых условиях, цАМФ может оказывать

28

Продукция и транспорт тиреоидных гормонов

прямое стимулирующее действие на полисомальную трансляцию мРНК, однако применяемые при этом дозы циклического нуклеотида значительно превосходят физиологические. Длительная стимуляция паренхиматозных клеток щитовидной железы вызывает развитие гиперпластических изменений.

Синтез тиреоглобулина подробно описывается далее в связи с продукцией йодсодержащихгормонов.

Обмен липидов

Наиболее характерными липидами клеток щитовидной железы являются фосфолипиды, фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин и фосфоинозитиды, а также водорастворимые моноэфиры фосфорилхолин и фосфорилэтаноламин и диэфиры глицеролфосфорилхолин и глицеролфосфорилэтаноламин. При этом фракция фосфоинозитидов является превалирующей. ТТГ вызывает увеличение включения меченного 32Р в состав липидов, что особенно отражается на фракциях фосфатидилинозитола и фосфатидных кислот. Изменения обмена липидов в тироцитах развиваются в течение 10 минут с момента стимуляции ТТГ и развиваются параллельно увеличению потребления кислорода митохондриями.

ТТГ стимулирует также липогенез и включение инозитола в фосфоинозитиды, в том числе в лишенной глюкозы среде инкубации. Добавление стабильной эмульсии свободных жирных кислот в низкой концентрации к срезам щитовидной железы вызывает усиление процессов липогенеза и потребления кислорода, а также потенцирует действие ТТГ на эти процессы.

Так как ранняя фаза действия ТТГ сопровождается также формированием капель в коллоиде, что имеет в своей основе усиление процессов экзоцитоза и, следовательно, требует возобновления структуры липидного матрикса, то не исключается вторичная активация процессов синтеза липидов в возбужденной щитовидной железе.

Простагландины - производные эйкозаполиеновых кислот, возможно, также вовлечены в регуляцию функциональной активности щитовидной железы. Так, в условиях in vitro РGЕ1 вызывает активацию процессов органификации йодида, метаболизм углеводов, резорбцию коллоида и секрецию тиреоидных гормонов, что сопровождается повышением внутриклеточного уровня цАМФ. ТТГ, в свою очередь, повышает образование PGE1 в тироцитах. Известен также факт ослабления или даже полного угнетения ответа тироцитов на действие ТТГ на фоне применения полифлоретина - ингибитора синтеза простагландинов.

Транспорт электролитов и обмен веществ

Обмен электролитов в клетках щитовидной железы сравнительно мало изучен. Установлено, что в ткани интактной железы содержится приблизительно 223 г воды, 111 ммоль неорганического натрия и 60 ммоль калия. Ионы натрия формируют медленно обменивающийся пул

Продукцияитранспорттиреоидныхгормонов 29

(с периодом полуоборота около 24 часов). Предполагается, что значительная часть ионов Na содержится в интрафолликулярном коллоиде в связанном (ионными связями или так называемыми «солевыми» мостиками) с тиреоглобулином виде. Введение животному ТТГ в дозе 0,5 мЕд активировало натриевые токи через потенциалзависимые каналы в течение 15 минут, что может быть объяснено как стимулирующим действием ТТГ на процессы транспорта йодид-ионов, сопряженные с активностью Na+/K+-АТФазы, так и изменением промежуточного обмена веществ в тироците и сопровождающим его увеличением натриевого тока.

Трансмембранная разность потенциалов в невозбужденном тироците (потенциал покоя) составляет порядка -50 мВ. Действие ТТГ вызывает быструю деполяризацию клеточной мембраны и снижение электрического сопротивления клеток щитовидной железы, что, возможно, сопровождается повышением трансмембранных ионных токов. Длительная (хроническая) стимуляция ТТГ также вызывает снижение поляризации клеточной мембраны и проводимости.

Активность связанной с митохондриальной мембраной оуабаинчувствительной АТФазы находится в зависимости от хронической стимуляции тироцитов ТГГ, что возможно является следствием гипертрофии и гиперплазии железистой ткани. Однако указаний на прямое действие ТТГ на этот фермент в настоящее время не имеется.

Тиреоидные гормоны обладают значительным отличием в сравнении с другими низкомолекулярными регуляторами, используемыми эндокринной системой. Их уникальность состоит в том, что будучи по своей природе органическими соединениями - производными аминокислоты тирозина, они содержат в своей структуре неорганический йод (59-65% по массе), что делает их единственными природными биологически активными йодсодержащими веществами.

Тиреоидные гормоны или йодтиронины, главными из которых являются 3,5,3',5'-тетрайодтиронин (Т4) или тироксин и 3,5,3' - трийодтиронин (Т3) или трийодтиронин. Хотя тироциты образуют и секретируют в кровь, главным образом, тироксин, но он, как полагают, обладает меньшей гормональной активностью по сравнению с трийодтиронином. Т3 в небольших количествах также секретируется в кровь тироцитами щитовидной железы, но основное его количество образуется непосредственно в клетках периферических тканей из Т4, который по этой причине часто называют прогормоном. Из Т4 образуется также 3,3',5'-трийодтиронин или реверсивный Т3 (рТ3), не обладающий существенной гормональной активностью. Таким образом, говоря об образовании и секреции тиреоидных гормонов, необходимо рассмотреть эти процессы не только в самой щитовидной железе, но и отдельно образование в тканях Т3 и рТ3. Структуры и биологическая активность этих веществ показаны в табл. 2.1.

30 Продукция и транспорт тиреоидных гормонов

Табл. 2.1. Химическое строение и сравнительная биологическая активность тиреоидных гормонов и их производных.

Структурная формула

Название

Био-

 

соединения и его

активность

 

обозначение

 

 

З,5,З',5'-L

 

 

 

тетрайод-тиронин

100

 

(L-тироксин, Т4)

 

 

3,5,3'-L-

 

 

 

трийодтиронин

300-800

 

3)

 

 

 

3,3',5'- L-

 

 

 

трийодтиронин

<1

 

(реверсивный Т3,

 

 

рТ3)

 

<1-3

 

 

 

 

D,L-3,3'-

 

 

 

дийодтиронин

 

 

(3,3'-Т2)

 

 

 

 

 

7-11

 

D,L-3,5-

 

 

 

дийодтиронин

 

 

(3,5-Т2)

 

 

 

D,L-3',5'-

 

0

 

дийодтиронин

 

 

(3'5'-Т2)

 

 

 

L-3,5,3',5'-

 

 

 

тетрайодтиро-

?10-50

 

уксусная

кислота

 

 

(тетрак)

 

 

 

L-3,5,3'-

 

?25-35

 

трийодтиро-

 

 

уксусная

кислота

 

 

(триак)

 

 

 

 

 

 

Биологическая активность тироксина (по влиянию на потребление кислорода митохондриями) принята за 100%, активность других соединений показана относительно тироксина.