
- •Ф. 3. Меерсон м. Г. Пшенникова адаптация к стрессорным ситуациям и физическим нагрузкам москва «медицина» 1988
- •Предисловие
- •Введение
- •Глава 1. Механизм адаптации к физическим нагрузкам
- •Основные стадии адаптации к физическим нагрузкам. Структурный «след» адаптации
- •Адаптация к физическим нагрузкам
- •Глава 2. Защитные эффекты адаптации к физическим нагрузкам. «цена» адаптации
- •Предупреждение стрессорных повреждений
- •Мышцы левого желудочка сердца адаптированных и контрольных крыс после перенесенного стресса
- •Профилактика ишемических повреждений сердца
- •Уменьшение факторов риска сердечно-сосудистых заболеваний
- •Лечение и реабилитация
- •Сходство положительных перекрестных эффектов адаптации к высотной гипоксии и физическим нагрузкам
- •Папиллярных мышц левого желудочка сердца крыс при эмоционально-болевом стрессе (м±m)
- •Отрицательные перекрестные эффекты адаптации
- •Глава 3. Адаптация к стрессорным ситуациям и ее защитные эффекты
- •Повреждающая стрессорная ситуация и адаптация к ней
- •Патогенез стрессорных повреждений сердца и предупреждение их при помощи адаптации
- •Стрессорное нарушение противоопухолевого иммунитета и его предупреждение при помощи предварительной адаптации1
- •Глава 4. Механизм адаптации к стрессорным ситуациям и стресс-лимитирующие системы организма
- •Основные изменения нейрогуморальной регуляции при адаптации к повторным стрессорным воздействиям
- •Стрессе (м±т)
- •Стресс-лимитирующие системы организма
- •Перекрестные эффекты адаптации к стрессорным ситуациям
- •Глава 5. Предупреждение фибрилляции сердца при помощи адаптации к стрессорным ситуациям и другим факторам среды
- •Стресс в этиологии и патогенезе ишемической болезни сердца
- •И фруктозо-1,6-дифосфатальдолазы в печени крыс (м±m) при эмоционально-болевом стрессе
- •Нарушения нервной регуляции в патогенезе фибрилляции сердца и острой сердечной смерти
- •Предупреждение аритмий и фибрилляции сердца при помощи адаптации к стрессорным ситуациям, физическим нагрузкам и высотной гипоксии
- •Кардиосклерозе
- •Контрольных и адаптированных крыс на микроионофоретическое подведение ацетилхолина и норадреналина
- •Кардиосклерозе
- •Глава 6. Предупреждение сердечных аритмий при помощи метаболитов и активаторов стресс-лимитирующих систем
- •Активаторы гамк-ергической системы и синтетические аналоги серотонина
- •Воздействиям (m±m)
- •Фибрилляции желудочков п эктопическую активность сердца при
- •Свободнорадикальное окисление в патогенезе ишемических и стрессорных повреждений миокарда и кардиопротекторное действие антиоксидантов1
- •Свободнорадикальное окисление в патогенезе аритмий и предупреждение фибрилляции сердца антиоксидантами
- •И содержание катехоламинов (мкг/г) в сердце крыс (m±m) при стрессе
- •И содержание катехоламинов (мкг/г) в надпочечниках крыс (m±m) при стрессе
- •Суправентрикулярных (свэ) и желудочковых экстрасистол (жэ) в течение суток у 21 больного нейроциркуляторной дистонией
- •Заключение
- •Список литературы
- •Дополнительный список литературы
- •Оглавление
- •Электронное оглавление
Адаптация к физическим нагрузкам
i
тренированности с экономизацией его функции в покое и при непредельных нагрузках, что характеризуется более низкими, чем в нетренированном организме в аналогичных условиях, значениями общей работы сердца, интенсивности функционирования его структур [Меерсон Ф. 3., 1975] и соответственно меньшими энергетическими затратами. Это обусловлено прежде всего брадикардией покоя и меньшим приростом частоты сердцебиений при непредельных нагрузках, что связано с адаптационными изменениями пейсмекера и нейрогуморальной его регуляции [Пшенникова М. Г., 1986]. В сочетании с некоторой гипотонией покоя и меньшим подъемом частоты в ответ на такие нагрузки данное обстоятельство обеспечивает в тренированном организме снижение в покое и меньшее увеличение при непредельной нагрузке «двойного произведения», или индекса напряжения миокарда, который определяет, как известно, уровень потребления миокардом кислорода [Jorgensen Ch. et al, 1977]. Кроме того, экономность работы сердца определяется при тренированности также указанными выше перестройками в органах и тканях функциональной системы, ответственной за адаптацию, которые обеспечивают более эффективную утилизацию кислорода и эффективное его использование и тем самым «снижают своя требования» к системам кровообращения и дыхания.
В целом эти и другие важные структурные изменения, формирующиеся в процессе длительной адаптации к физическим нагруз-
34
кам в функциональной системе, ответственной за эту адаптацию, образуют структурный «след» достаточно сложной архитектуры, который создает возможность интенсивной и в то же время экономичной мышечной работы, составляет базис устойчивой адаптации организма к мышечной работе. Вместе с тем этот «след» является основой повышения резистентности организма к ряду повреждающих воздействий и использования адаптации как средства профилактики, лечения и реабилитации при различных заболеваниях.
Основные из этих изменений и компонентов структурного «следа» представлены на схеме 1 (с. 34).
Завершая краткое ознакомление с третьей стадией развития процесса адаптации, следует подчеркнуть, что рассмотренные положительные адаптационные изменения, составляющие преимущества тренированного организма, развиваются, как правило, при наиболее естественных динамических («аэробических», по терминологии современных зарубежных авторов) нагрузках, т. е. при тренировках на выносливость.
Однако при некоторых видах физических нагрузок, например при направленной тренировке к силовым нагрузкам, культуризме и т. д., адаптация в большинстве случаев не приводит к повышению резистентности организма к повреждающим воздействиям.
В задачи нашего изложения не входило рассмотрение такой узкоспециализированной тренированности, однако к некоторым примерам мы будем обращаться во 2-й главе при обсуждении «цены» адаптации.
Четвертая стадия процесса — стадия «изнашивания» системы, ответственной за адаптацию, не является обязательной, так как устойчивая адаптация к физической нагрузке может сохраняться в течение многих лет. Вероятность реализации стадии «изнашивания» возрастает при двух обстоятельствах: во-первых, при длительных перерывах в тренировке к физической нагрузке, когда системный структурный «след» и особенно его компоненты в исполнительных органах функциональной системы могут утрачиваться. Восстановление этого «следа» после возобновления интенсивных нагрузок имеет для организма большую структурную «цену», т. е. вновь требует большой активации синтеза нуклеиновых кислот и белков, и может протекать неудовлетворительно, особенно в немолодом возрасте и при наличии болезней. В связи с этим принятый в спорте принцип непрерывности спортивных тренировок является не только основой сохранения спортивной рабочей формы, но также и условием экономии структурных ресурсов организма. Во-вторых, нарушению устойчивой адаптации к физической нагрузке могут способствовать условия, при которых физическая нагрузка сочетается с интенсивными стрессорными, например соревновательными, ситуациями.
35