
- •1. Дочисловой период обучения. Методика изучения устной и письменной нумерации однозначных чисел
- •2. Методика изучения устной и письменной нумерации в концентрах «Двузначные числа до 20», «Двузначные числа от 21 до 100»
- •При изучении нумерации в пределах 100 школьники должны получить следующие знания, умения и навыки:
- •3. Методика изучения устной и письменной нумерации в концентре «Трехзначные и четырехзначные числа»
- •Последовательность изучения нумерации:
- •4. Методика изучения устной и письменной нумерации в концентре «Многозначные числа»
- •5. Методика изучения табличных случаев сложения и вычитания в пределах 10
- •6. Методика изучения табличных случаев сложения и соответствующих случае вычитания в концентре «Двузначные числа до 20»
- •7. Методика изучения устного сложения и вычитания в концентре «Двузначные числа от 21 до 100»
- •8. Методика изучения письменного сложения и вычитания в концентре «Двузначные числа от 21 до 100»
- •Этапы знакомства с табличным умножением числа 2:
- •10. Методика изучения внетабличного умножения и деления, деление с остатком
- •11. Методика изучения приемов устного и письменного сложения и вычитания в концентре «Трёхзначные и четырёхзначные числа»
- •12. Методика изучения приемов устного и письменного умножения и деления в концентре «Трёхзначные и четырёхзначные числа»
- •13. Методика изучения приемов вычитания и сложения в концентре «Многозначные числа»
- •14. Методика изучения приемов письменного умножения в концентре «Многозначные числа»
- •15. Методика изучения приемов письменного деления на однозначное число в концентре «Многозначные числа»
- •16. Методика изучения приемов письменного деления на двузначное и трехзначное число в концентре «Многозначные числа»
- •17. Основные этапы решения задачи. Аналитико-синтетический поиск решения
- •I. Ознакомление с содержанием задачи.
- •II. Поиск решения - выдвижение плана решения задачи.
- •III. Процесс решения - реализация плана решения.
- •IV. Проверка решения задачи.
- •18. Функции задач в обучении. Классификация простых задач. Методика обучения решению задач на нахождение доли от числа и числа по его доле
- •Классификация задач
- •Задач и их функции
- •Методика обучения решению задач на нахождение доли от числа и числа по его доле
- •21. Методика обучения решению простых задач на увеличение (уменьшение) числа на несколько единиц, и в несколько единиц, задачи на разностное и кратное сравнение
- •22. Методика обучения решению задач на пропорциональные величины Задачи с пропорциональными величинами
- •23. Методика обучения числовых выражений, порядка выполнения арифметических действий
- •При изучении арифметических действий включаются упражнения на сравнения выражений, их делят на 3 группы.
- •24. Методика обучения решению задач составлением выражения и уравнения
- •25. Методика изучения переменной, обучение решению уравнений и неравенств с переменной
- •28. Методика ознакомления учащихся с измерением длинны и системой мер длины, с построение диаграмм. Обучение арифметическим действиям над величинами, выраженными мерами длины
- •29. Методика ознакомления учащихся с измерением массы и площади и системой мер массы и площади.
- •30. Методика знакомства учащихся с измерением времени и системой мер времени, с функциональной зависимостью
- •Развитие временных представлений о единицах измерения времени
- •Действия над числами, выраженными мерами времени
17. Основные этапы решения задачи. Аналитико-синтетический поиск решения
Решение задачи осуществляется в несколько этапов.
I. Ознакомление с содержанием задачи.
На первом этапе процесса решения задачи имеют место осознание условия и требования задачи, усвоение и разработка элементов условия (или элементов цели), поиск необходимой информации в сложной системе памяти, соотнесение условия и заключения задачи с имеющимися знаниями и опытом и т.д.
II. Поиск решения - выдвижение плана решения задачи.
На втором этапе происходят целенаправленные пробы различных сочетаний из данных и искомых, попытки подвести задачу под известный тип, выбор наиболее приемлемого в данных условиях метода решения (из известных), выбор стратегии решения, поиск плана решения и его корректировка на основе предварительной апробации, соотнесения с условием задачи и интуитивных соображений, фиксирование определенного плана решения задачи и т.д.
III. Процесс решения - реализация плана решения.
На третьем этапе проводится практическая реализация плана решения во всех его деталях с одновременной корректировкой через соотнесение с условием и выбранным базисом, выбор способа оформления решения, запись результата и т.д.
IV. Проверка решения задачи.
На четвертом этапе фиксируется конечный результат решения, проводится критический анализ результата, поиск путей рационализации решения, исследование особых и частных случаев, выявление существенного (потенциально полезного), систематизация новых знаний и опыта и т.д.
Сюжетной задачей называют такую задачу, в которой данные и связь между ними включены в фабулу. Содержание сюжетной задачи чаще всего представляет собой некоторую ситуацию, более или менее близкую к жизни. Эти задачи важны главным образом для усвоения учащимися математических отношений, для овладения эффективным методом познания - моделированием, для развития способностей и интереса учащихся к математике. Таковыми являются, например, текстовые задачи на составление уровнения. При решении текстовой задачи с помощью составления уравнения необходимо придерживаться следующей последовательности действий:
1) вычленить условие и требование задачи; 2) установить зависимость между данными и искомыми; 3) выявить способ составления уравнения и т. д.
Учебными действиями, посредством которых решается учебная задача, являются следующие:
1) преобразование условий предметной задачи с целью выявления в ней основного отношения; 2) моделирование выделенного отношения в предметной, графической или буквенной форме; 3) преобразование модели отношения для изучения его свойств; 4) построение системы частных задач, решаемых общим способом.
Решение задач в осуществляется в основном тремя способами:
- арифметическим , при котором все логические операции при решении задачи проводятся над конкретными числами, и основой рассуждения является знание смысла арифметических действий;
- алгебраическим , при котором составляется уравнение (система уравнений), решение которого основано на свойствах уравнений;
- комбинированным , который включает как арифметический, так и алгебраический способы решения.
Аналитико-синтетический метод. Значительно чаще, используется на практике, чем аналитический и синтетический методы. Он сочетает элементы и анализа и синтеза. Так при решении сложной задачи она с помощью синтеза разбивается на ряд более простых задач, а затем при помощи синтеза происходит соединение решений этих задач в единое целое.
Обучение учащихся начальных классов рассмотренным методам поиска решения задач сводится к обучению их правильному формулированию вопросов, соответствующих аналитическому или синтетическому методу.
При разборе задачи нового вида учитель должен в каждом отдельном случае поставить детям вопросы так, чтобы навести их на правильный или осознанный выбор арифметических действий.
Очень важно чтобы вопросы не были подсказывающими, а вели бы к самостоятельному нахождению пути решения задачи.
Разбор задачи заканчивается составлением плана решения.
План решения – это объяснение того, что узнаём, выполнив то или иное действие, и указания по порядку арифметических действий.
Часто при введении задач нового вида ученики затрудняются самостоятельно составить план решения, тогда им помогает учитель.