
- •1. Дочисловой период обучения. Методика изучения устной и письменной нумерации однозначных чисел
- •2. Методика изучения устной и письменной нумерации в концентрах «Двузначные числа до 20», «Двузначные числа от 21 до 100»
- •При изучении нумерации в пределах 100 школьники должны получить следующие знания, умения и навыки:
- •3. Методика изучения устной и письменной нумерации в концентре «Трехзначные и четырехзначные числа»
- •Последовательность изучения нумерации:
- •4. Методика изучения устной и письменной нумерации в концентре «Многозначные числа»
- •5. Методика изучения табличных случаев сложения и вычитания в пределах 10
- •6. Методика изучения табличных случаев сложения и соответствующих случае вычитания в концентре «Двузначные числа до 20»
- •7. Методика изучения устного сложения и вычитания в концентре «Двузначные числа от 21 до 100»
- •8. Методика изучения письменного сложения и вычитания в концентре «Двузначные числа от 21 до 100»
- •Этапы знакомства с табличным умножением числа 2:
- •10. Методика изучения внетабличного умножения и деления, деление с остатком
- •11. Методика изучения приемов устного и письменного сложения и вычитания в концентре «Трёхзначные и четырёхзначные числа»
- •12. Методика изучения приемов устного и письменного умножения и деления в концентре «Трёхзначные и четырёхзначные числа»
- •13. Методика изучения приемов вычитания и сложения в концентре «Многозначные числа»
- •14. Методика изучения приемов письменного умножения в концентре «Многозначные числа»
- •15. Методика изучения приемов письменного деления на однозначное число в концентре «Многозначные числа»
- •16. Методика изучения приемов письменного деления на двузначное и трехзначное число в концентре «Многозначные числа»
- •17. Основные этапы решения задачи. Аналитико-синтетический поиск решения
- •I. Ознакомление с содержанием задачи.
- •II. Поиск решения - выдвижение плана решения задачи.
- •III. Процесс решения - реализация плана решения.
- •IV. Проверка решения задачи.
- •18. Функции задач в обучении. Классификация простых задач. Методика обучения решению задач на нахождение доли от числа и числа по его доле
- •Классификация задач
- •Задач и их функции
- •Методика обучения решению задач на нахождение доли от числа и числа по его доле
- •21. Методика обучения решению простых задач на увеличение (уменьшение) числа на несколько единиц, и в несколько единиц, задачи на разностное и кратное сравнение
- •22. Методика обучения решению задач на пропорциональные величины Задачи с пропорциональными величинами
- •23. Методика обучения числовых выражений, порядка выполнения арифметических действий
- •При изучении арифметических действий включаются упражнения на сравнения выражений, их делят на 3 группы.
- •24. Методика обучения решению задач составлением выражения и уравнения
- •25. Методика изучения переменной, обучение решению уравнений и неравенств с переменной
- •28. Методика ознакомления учащихся с измерением длинны и системой мер длины, с построение диаграмм. Обучение арифметическим действиям над величинами, выраженными мерами длины
- •29. Методика ознакомления учащихся с измерением массы и площади и системой мер массы и площади.
- •30. Методика знакомства учащихся с измерением времени и системой мер времени, с функциональной зависимостью
- •Развитие временных представлений о единицах измерения времени
- •Действия над числами, выраженными мерами времени
14. Методика изучения приемов письменного умножения в концентре «Многозначные числа»
Умножение и деление многозначных чисел представляют гораздо больше трудностей, чем сложение и вычитание. Это связано с тем, что ученики нетвердо знают таблицу умножения. Даже те учащиеся, которые запомнили таблицу умножения, затруднялись применить ее при решении примера с многозначными числами, т. е. актуализировать свои знания и использовать их. Трудности возникают и тогда, когда надо единицы низшего разряда перевести в высший, удержать их в памяти (умножение с переходом через разряд). Неумение долгое время сосредоточить внимание на выполнении действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки. Неустойчивость внимания, стереотипность мышления являются нередко и причиной таких ошибок: умножая первый множитель на двузначный второй множитель, умственно отсталый школьник производит умножение только на единицы, т. е. находит первое неполное произведение, а на десятки умножение не производит, при этом считает, что действие им выполнено полностью. Как и при умножении в пределах 1000, наибольшее затруднение вызывают случаи, в которых в множителе нуль находится в середине или на конце (105x9, 580x4). В школе оправдала себя следующая последовательность в изучении действий умножения и деления: Умножение и деление на 10, 100, 1000 (деление без остатка и с остатком). Умножение и деление на однозначное число.
Умножение и деление на круглые десятки, сотни и тысячи.
Умножение и деление на двузначные и трехзначные числа:
а) умножение и деление двузначного числа на двузначное; б) умножение и деление трехзначного числа на двузначное (в частном число десятков равно сначала 1, а затем 2 и т. д.); в) умножение и деление четырехзначного числа на двузначное (число сотен в частном сначала равно 1, затем 2 и т. д.); Для лучшей отработки приемов осуществления этих действий, их дифференцировки, установления взаимосвязи между действиями на каждом этапе изучения действий сначала отрабатываются приемы умножения. После первоначального знакомства с алгоритмом умножения необходимо дать достаточное количество вариативных упражнений, для того чтобы учащиеся научились применять его к различным числам. Затем учащиеся учатся закреплять алгоритм и разных ситуациях, сначала под руководством учителя, а потом и самостоятельно. 2. Умножение разрядных чисел на однозначное число начинается с повторения этих действий уже известными учащимся числами — умножаются и делятся: ) десятки (30x3, 80x4, 90:3); б) сотни (700x2, 800:4). Затем рассматриваются устные случаи умножения единиц тысяч. 9 тыс.:3=3 тыс.
Умножение и деление многозначных чисел на однозначное число Последовательность выполнения действий:
1. Подготовительные упражнения. 2. Умножение и деление разрядных чисел на однозначное число.
Умножение многозначных чисел на однозначные без раздробления и превращения разрядных единиц (12 432x2).
Умножение многозначных чисел на однозначные с раздроблением и превращением разрядных единиц сначала в одном, а затем в двух и более разрядах.
Особые случаи умножения, в которых нули стоят в середине или на конце множимого.
Умножение
многозначного числа на однозначное
Подбираются
для решения случаи с постепенным
нарастание трудности: сначала с переходом
через разряд в одном, в двух, затем и в
нескольких разрядах.
Наконец,
решаются примеры на умножение, в которых
первым множитель имеет нули в середине
или на конце (особые случаи)
При
записи примеров с первым множителем,
оканчивающимся нулями, второй множитель
можно подписывать под первой значащей
цифрой справа:
Умножение на разрядные числа. Подготовительным упражнением к умножению на разрядные числа является повторение табличного умножения, умножения на однозначное число, а также на 10, 100, 1000. Следует вспомнить, как круглое число представить в виде произведения двух чисел (например, 20=2∙10, 500=5∙100), повторить уже известные учащимся случаи умножения на круглые, вспомнить 30 правило: чтобы умножить число на круглые десятки, 720 нужно умножить это число на число десятков и к полученному произведению приписать нуль, т. е. умножить его на 10. Это правило учащиеся применяют и при умножении больших чисел в пределах 10 000, 100 000 и 1 000 000. Аналогично учащиеся знакомятся с умножением двузначных, трех- и четырехзначных чисел на круглые сотни: 25 ∙ 300=25 ∙ 3 • 100=75 • 100=7500.