
- •Сопротивление материалов курс лекций оглавление
- •Введение .............................................................................................
- •Растяжение и сжатие ........................................................................
- •Геометрические характеристики поперечных сечений бруса........
- •Кручение.............................................................................................
- •Изгиб...................................................................................................
- •Пример расчета (задача № 9).....................................................
- •Расчет статически неопределимых систем методом сил................
- •Устойчивость прямых стержней.......................................................
- •7. Вопросы для самопроверки, задачи для самостоятельной и
- •7.1. Введение......................................................................................
- •1. Введение
- •1.1. Задачи и методы сопротивления материалов
- •1.2. Реальный объект и расчетная схема
- •1.3. Внешние и внутренние силы. Метод сечений
- •1.4. Напряжения
- •1.5. Перемещения и деформации
- •1.6. Закон Гука и принцип независимости действия сил
- •2. Растяжение и сжатие
- •2.1. Внутренние силы и напряжения
- •2.2. Удлинение стержня и закон Гука
- •2.3. Пример расчета (задача № 1)
- •2.4. Потенциальная энергия деформации
- •2.5. Статически определимые и статически неопределимые системы
- •Напряженное и деформированное состояние при растяжении и сжатии
- •Основные механические характеристики материалов
- •2.8. Общие принципы расчета конструкции
- •Пример расчета (задача № 2)
- •3. Геометрические характеристики поперечных сечений бруса
- •Статические моменты сечения
- •3.2. Моменты инерции сечения
- •3.3. Главные оси и главные моменты инерции
- •3.4. Пример расчета (задача № 3)
- •4. Кручение
- •4.1. Кручение бруса с круглым поперечным сечением
- •4.2. Кручение бруса с некруглым поперечным сечением
- •4.3. Пример расчета (задача № 4)
- •4.4. Кручение тонкостенного бруса
- •4.5. Пример расчета (задача 5)
- •5. Изгиб
- •5.1. Внутренние усилия в поперечных сечениях бруса
- •5.2. Основные дифференциальные соотношения теории изгиба
- •5.3. Напряжения при чистом изгибе
- •5.4. Примеры расчетов
- •5.4.1. Схема I. Консольная балка (задача №6)
- •5.4.2. Схема II. Двухопорная балка (задача № 7)
- •5.4.3. Схема III. Плоская рама (задача № 8)
- •5.5. Касательные напряжения при поперечном изгибе. Главные напряжения при изгибе
- •5.6. Пример расчета (задача № 9)
- •5.7. Перемещения при изгибе. Метод начальных параметров
- •5.8. Пример расчета (задача № 10)
- •5.9. Косой изгиб
- •5.10. Пример расчета (задача № 11)
- •5.11. Внецентренное растяжение и сжатие
- •5.12. Пример расчета (задача № 12)
- •5.13. Теории прочности
- •5.14. Пример расчета (задача № 13)
- •6. Расчет статически неопределимых систем методом сил
- •6.1. Стержневые системы. Степень статической неопределимости
- •6.2. Определение перемещений методом Мора
- •6.3. Метод сил
- •6.4. Пример расчета (задача № 14)
- •7. Устойчивость прямых стержней
- •7.1. Понятие об устойчивости. Задача Эйлера
- •7.2. Границы применимости решения Эйлера. Формула Ясинского
- •7.3. Расчет сжатых стержней на устойчивость
- •7.4. Пример расчета (задача № 15)
- •8. Динамические задачи
- •8.1. Основные определения
- •8.2. Колебания системы с одной степенью свободы
- •8.3. Пример расчета (задача № 16)
- •8.4. Соударение твердого тела и системы с одной степенью свободы
- •8.5. Пример расчета (задача № 17)
8.4. Соударение твердого тела и системы с одной степенью свободы
Задача соударения различных механических систем часто встречается в инженерной деятельности в различных сферах, поэтому имеет большое практическое значение.
Взаимодействие тел, при котором за очень малый промежуток времени скачкообразно изменяются скорости взаимодействующих тел, называется ударом. В период взаимодействия соударяемых тел между ними развивается результирующая контактная сила. Хотя время действия контактной силы обычно очень мало и измеряется микро или миллисекундами, она развивается очень быстро и принимает большие значения.
Задача соударения твердых деформируемых тел в механике, как правило, относится к классу динамических контактных задач со смешанными граничными условиями, содержащими в себе многие трудности математического порядка при их решении, которые не всегда могут быть преодолены простыми инженерными способами. Эти трудности в первую очередь связаны с определением с определением характера изменения функции напряжения в зоне контакта соударяемых тел по пространственным координатам и во времени. Большие сложности возникают и при учете волновых процессов, возникающих, как в зоне контакта, так и внутри соударяемых тел. Например, дифракционных волновых процессов по контуру в зоне контакта, и интерференционных явлений внутри соударяемых тел. Здесь существенное значение приобретает и учет фактора рассеяния энергии, трудно поддающийся анализу в данном случае.
Исходя из вышеизложенного, ниже при решении задач, применяется упрощенный инженерный подход, основанный на следующих упрощающих предпосылках.
При взаимодействии соударяемых тел они принимаются или идеально упругими, или абсолютно твердыми. Деформации в упругих соударяемых телах происходят мгновенно.
С применением энергетического подхода рассмотрим соударение падающего груза массой М с высоты h на систему с одной степенью свободы (рис. 8.5). Считаем, что масса балки m сосредоточена в месте соударения.
Рис. 8.5
Составим энергетический баланс заданной системы в момент возникновения максимальных прогибов балки:
К0 + П = U + К, (8.8)
где
кинетическая
энергия падающего груза в момент
соударения с балкой; П = (М + m)gymax работа
внешних сил на перемещение ymax;
потенциальная
энергия деформации балки; К кинетическая
энергия системы при y = ymax.
Так
как в состоянии наибольшего отклонения
балки, y = ymax,
,
то для указанного момента времени К = 0.
С учетом вышеизложенного (8.8) принимает
вид:
, (8.9)
или
. (8.10)
Величина 11 прогиб, который получила бы балка под действием единичной статической силы, приложенной в месте удара. Следовательно, yCТ = M g 11 представляет собой прогиб который получила бы балка под действием статически прикладываемой силы, равной весу падающего груза G = M g . Тогда уравнение (8.10) можно представить в виде:
.
Из решения последнего уравнения получаем:
. (8.11)
Отсюда, учитывая, что коэффициент динамичности определяет во сколько раз максимальный прогиб при динамическом нагружении больше прогиба, возникающего при статическом характере приложения нагрузки, получим:
. (8.12)
Величина коэффициента динамичности , как показывает выражение (8.12), зависит главным образом от жесткости рассматриваемой системы в направлении удара и от кинетической энергии падающего груза в момент соударения.
Для упругих систем динамические напряжения и остальные внутренние силовые факторы определяются по той же схеме, как и прогибы. Например, для напряжений, имеем:
ДИН = CТ . (8.13)
В тех случаях, когда масса балки m мала, по сравнению с массой груза M, из (8.12), принимая m = 0, получим:
. (8.14)
В частности, если груз прикладывается на упругую систему мгновенно, тогда задавая h = 0 из (8.14), коэффициент динамичности принимает значение = 2.