
- •1. Загальні відомості про автомобільні
- •1.1. Принцип дії та основні поняття, пов'язані з роботою поршневих двигунів
- •1.2. Короткий історичний огляд розвитку двз
- •1.3. Класифікація автомобільних двз
- •1.4. Режими роботи автомобільних двз
- •1.5. Основні напрямки подальшого розвитку автомобільних двз
- •2. Термодинамічні цикли поршневих двигунів
- •2.1. Загальні відомості про цикли
- •2.2. Види термодинамічних циклів двз
- •2.3. Показники термодинамічних циклів
- •3. Робочі тіла у двз, IX властивості та реакції згоряння
- •3.1. Робочі тіла у двз
- •3.2. Палива та їх властивості
- •3.2.1. Рідкі палива
- •3.2.2. Газові палива
- •3.3. Склад та кількість свіжого заряду і продуктів згоряння
- •3.3.1. Двигуни, що працюють на рідкому паливі
- •3.3.2. Двигуни з іскровим запалюванням, що працюють на газовому паливі
- •Елементарний склад паливних газів
- •Залежності молярних теплоємкостей газів від температури
- •3.3.3. Газодизелі
- •4. Дійсні цикли автомобільних двигунів
- •4.1. Загальні відомості про дійсні цикли двз
- •4.2. Процес впуску
- •4.2.1. Особливості процесу впуску
- •4.2.2. Параметри процесу впуску
- •Особливості розрахунку процесу впуску при наддуві.
- •Значення параметрів газообміну
- •4.2.3. Вплив різних факторів на коефіцієнт наповнення
- •4.2.4. Особливості газообміну в двотактних двигунах
- •Питання і завдання для самоконтролю
- •4.3. Процес стиску
- •Роль і місце процесу стиску в робочому циклі
- •Теплообмін у процесі стиску
- •4.3.3. Розрахунок процесу стиску
- •Параметри процесу стиску
- •Питання і завдання для самоконтролю
- •4.4. Процеси сумішоутворення і згоряння
- •4.4.1. Сумішоутворення у бензинових і газових двигунах
- •4.4.2. Сумішоутворення в дизелях
- •4.4.3. Основи згоряння паливоповітряних сумішей
- •4.4.4. Процес згоряння уДвз з іскровим запалюванням
- •Фактори, що впливають на процес згоряння у двигунах з іскровим запалюванням
- •Експлуатаційні фактори
- •Конструкційні фактори
- •Фактори, що впливають на появу детонації Конструктивні фактори
- •Експлуатаційні фактори
- •4.4.5. Процес згоряння у дизелях
- •4.4.6. Розрахунок процесу згоряння
- •4.5. Процес розширення
- •4.5.1. Теплообмін між робочим тілом і стінками циліндра
- •Параметри процесу розширення
- •4.5.2. Розрахунок процесу розширення
- •Питання і завдання для самоконтролю
- •4.6. Процес випуску
- •Питання і завдання для самоконтролю
- •4.7. Показники робочого циклу і двигуна
- •4.7.1. Індикаторні показники робочого циклу
- •Індикаторні показники автомобільних двз
- •Вплив різних факторів на індикаторні показники циклу Двигуни з іскровим запалюванням
- •4.7.2. Механічні втрати
- •Значення коефіцієнтів a I b для двз різних типів
- •4.7.3. Ефективні показники двигуна
- •Ефективні показники автомобільних двз
- •Вплив різних факторів на ефективні показники двигунів
- •4.7.4. Питомі показники двигуна
- •4.7.5. Тепловий розрахунок та визначення основних розмірів автомобільного двигуна
- •Значення п і s/d для автомобільних двз
- •Питання і завдання для самоконтролю
- •4.8. Тепловий баланс і теплова напруженість двигуна
- •4.8.1. Тепловий баланс
- •Значення складових теплового балансу в автомобільних двз
- •4.8.2. Теплова напруженість
- •Питання і завдання для самоконтролю
- •4.9. Екологічні показники автомобільних двигунів
- •4.9.1. Основні шкідливі речовини, що виділяються при роботі двигунів
- •4.9.2. Нормування шкідливих викидів двз
- •4.9.3. Вплив різних факторів на токсичність двигунів
- •4.9.4. Основні напрями зниження токсичності та димності відпрацьованих газів
- •4.9.5. Шум двигунів
- •Питання і завдання для самоконтролю
- •4.10. Режими роботи і характеристики автомобільних двигунів
- •4.10.1. Швидкісні характеристики
- •4.10.2. Навантажувальні характеристики
- •4.10.3. Регулювальні характеристики
- •4.10.4. Характеристики оптимального регулювання бензинових та газових двигунів
- •4.10.5. Характеристики холостого ходу
- •4.10.6. Багатопараметрова характеристика
- •4.10.7. Характеристики токсичності
- •4.10.8. Особливості роботи автомобільного двигуна на несталих режимах
- •Питання і завдання для самоконтролю
- •5. Системи живлення
- •5.1. Системи живлення карбюраторних двигунів
- •5.1.1. Загальні відомості про карбюрацію
- •5.1.2. Робочий процес елементарного карбюратора
- •5.1.3. Системи компенсації складу суміші у головній дозуючій системі
- •5.1.4. Додаткові паливодозуючі системи і пристрої карбюраторів
- •5.1.5. Балансування карбюратора
- •5.1.6. Конструктивні особливості карбюраторів
- •5.1.7. Допоміжне обладнання системи живлення
- •5.1.8. Основні напрямки подальшого вдосконалення системи живлення карбюраторних двигунів
- •Питання і завдання для самоконтролю
- •5.2. Системи живлення двигунів із впорскуванням бензину
- •5.2.1. Переваги і недоліки систем впорскування бензину в порівнянні з карбюрацією
- •5.2.2. Класифікація системи впорскування
- •5.2.3. Типи та особливості будови основних застосовуваних систем впорскування та їх елементів
- •Підсистеми визначення експлуатаційного режиму роботи двз
- •Елементи підсистеми опрацювання даних та керування системою впорскування палива
- •Функціонування системи на різних режимах роботи двигуна
- •Комбінована система "Мотронік"
- •5.2.5. Перспективи подальшого розвитку систем впорскування
- •Завдання і запитання для самоконтролю
- •5.3. Системи живлення дизелів паливом
- •5.3.1. Призначення й будова паливних систем
- •5.3.2. Класифікація паливних систем дизелів
- •5.3.3. Будова і дія основних агрегатів паливних систем Паливні системи безпосереднього впорскування розділеного типу
- •Акумуляторні паливні системи
- •5.3.4. Вибір основних конструктивних елементів систем живлення
- •Коефіцієнти для розрахунку паливних
- •5.3.5. Процес впорскування палива
- •5.3.6. Поняття про методи розрахунку процесу впорскування
- •5.3.7. Регулювання частоти обертання колінчастого вала дизеля
- •5.3.8. Відомості про матеріали для паливних систем дизелів
- •5.3.9. Відомості про допоміжні агрегати паливних систем
- •5.3.10. Основні напрямки удосконалення паливних систем дизелів
- •Питання і завдання для самоконтролю
- •5.4. Системи живлення газових і бензогазових двигунів та газодизелів
- •5.4.1. Системи живлення газових двигунів
- •5.4.2. Системи живлення бензогазових двигунів
- •5.4.3. Система живлення газодизелів
- •5.4.4. Газові редуктори
- •5.4.5. Розрахунок газової апаратури
- •5.4.6. Основні напрямки розвитку газових систем живлення
- •Питання і завдання для самоконтролю
- •5.5. Системи наддуву автомобільних двигунів
- •5.5.1. Мета, способи і схеми наддуву
- •5.5.2. Класифікація систем наддуву
- •5.5.3. Системи газотурбінного наддуву
- •5.5.4. Будова та робота турбокомпресора
- •5.5.5. Спільна робота двигуна з турбокомпресором
- •5.5.6. Система наддуву з хвильовим обмінником тиску
- •5.5.7. Система охолодження повітря після компресора
- •5.5.8. Динамічний наддув
- •Питання і завдання для самоконтролю
- •Розділ другий динаміка, зрівноваженість та основи конструювання і розрахунку автомобільних двигунів
- •6. Кінематика і динаміка кривошипно-шатунного механізму
- •6.1. Кінематика кривошипно-шатунного механізму
- •6.1.1. Типи кривошипно-шатунних механізмів
- •6.1.2. Переміщення поршня
- •6.1.3. Швидкість поршня
- •6.1.4. Прискорення поршня
- •Питання і завдання для самоконтролю
- •6.2. Динаміка кривошипно-шатунного механізму
- •6.2.1. Сили, які діють у кривошипно-шатунному механізмі
- •6.2.2. Сили тиску газів
- •6.2.3. Сили інерції
- •6.2.4. Сумарна сила, що діє на поршень
- •6.2.5. Сумарні сили і моменти, що діють у кривошипно-шатунному механізмі
- •6.2.6. Сумарні індикаторний і ефективний крутний моменти
- •6.2.7. Сили, що діють на шийки і підшипники колінчастого вала
- •Питання і завдання для самоконтролю
- •6.3. Нерівномірність ходу двигуна
- •Питання і завдання для самоконтролю
- •6.4. Розрахунок маховика
- •6.4.1. Розрахунок маховика за припустимим коефіцієнтом нерівномірності ходу двигуна
- •6.4.2. Розрахунок маховика з умови забезпечення зрушення автомобіля з місця
- •Питання і завдання для самоконтролю
- •7. Зрівноваженість двигунів
- •7.1. Сили і моменти, які викликають незрівноваженість двз
- •7.2. Загальні умови зрівноваженості двз. Критерії зрівноваженості
- •7.3. Методи аналізу зрівноваженості сил інерції та моментів від них
- •7.4. Аналіз зрівноваженості автомобільних двигунів різних схем
- •7.4.7. Двигун одноциліндровий
- •7.4.2. Двигун рядний чотирициліндровий
- •7.5. Графічний метод аналізу зрівноваженості двз
- •7.5.1. Аналіз зрівноваженості відцентрових сил інерції і моментів від них
- •7.5.2. Аналіз зрівноваженості сил інерції мас, що рухаються зворотно-поступально, і моментів від них
- •7.5.3. Аналіз зрівноваженості рядного чотирициліндрового двигуна
- •7.6. Призначення противаг у двз
- •Питання і завдання для самоконтролю
- •8. Основи конструювання і розрахунку автомобільних двз
- •8.1. Загальні принципи конструювання
- •8.2. Передумови для розрахунку. Розрахункові режими
- •Співвідношення між напруженнями для різних циклів
- •Значення масштабних факторів для конструкційних деталей
- •Значення технологічних при різних видах обробки поверхні
- •Коефіцієнти приведення
- •Механічні якості конструкційних сталей
- •Питання і завдання для самоконтролю
- •8.3. Кривошипно-шатунний механізм
- •8.3.1. Корпусні деталі двигуна
- •8.3.2. Група поршня
- •Значення відносних конструктивних параметрів поршня
- •Розрахунок деталей поршневої групи
- •8.3.3. Група шатуна
- •8.3.4. Група колінчастого вала
- •Відносні розміри шатунних та корінних шийок
- •Поняття про коливання колінчастого вала
- •Питання і завдання для самоконтролю
- •8.4. Механізм газорозподілу
- •Питання і завдання для самоконтролю
- •8.5. Системи змащення
- •Питання і завдання для самоконтролю
- •8.6. Системи охолодження
- •Питання і завдання для самоконтролю
- •8.7. Системи пуску
- •Питання і завдання для самоконтролю
- •8.8. Системи впуску і випуску
- •Питанняі завдання для самоконтролю
- •9.Принцип побудови систем автоматизованого проектування двз
- •9.1. Загальні підходи до проектування двз як складної технічної системи
- •9.2. Можливий ступінь автоматизації різних етапів розробки конструкції двз
- •9.3. Основні елементи системи сапр двз
- •9.4. Загальна схема сапр двз
- •Завдання і запитання для самоконтролю
- •10. Перспективи розвитку двигунів нетрадиційних схем
- •10.1. Адіабатні дизелі
- •10.2. Двигун зовнішнього згоряння
- •10.3. Роторно-поршневі двигуни
- •10.4. Газотурбінні двигуни
- •10.5. Парові двигуни
- •10.6. Електричні двигуни
- •10.7. Інерційні двигуни
- •Питання і завдання для самоконтролю
- •Основні дані про зрівноваженість автомобільних двигунів найбільш вживаних схем
4.4.4. Процес згоряння уДвз з іскровим запалюванням
Запалювання у цих двигунах починається за таких умов: циліндр двигуна, наповнений робочою сумішшю, яка складається з пари палива, повітря й деякої кількості залишкових газів від попереднього циклу; суміш стиснута до тиску 0,9...1,5 МПа, її температура становить 600...750 К; суміш запалюється від високотемпературного розряду між електродами свічки.
Процес згоряння відбувається поблизу в.м.т. за короткий відрізок часу, десь 0,001 с. За цей час колінчастий вал повертається на 15...20° і поршень трохи переміщується від в.м.т. Тому лінія згоряння на звичайній діаграмі дійсного циклу відхиляється від лінії підводу теплоти при V=const в ідеальному циклі. Однак відхилення це незначне, і на індикаторній діаграмі в системі координат p-V аналізувати процес згоряння важко. Для цієї мети зручніше використовувати так звану розгорнуту індикаторну діаграму, на якій зміна параметрів р, Т зображується у залежності від кута повороту колінчастого вала φ (рис. 4.17).
Окрім тиску р і температури Т газів у циліндрі, важливими показниками процесу згоряння є характеристики тепловиділення і використання теплоти, а також характеристика швидкості тепловиділення.
Характеристикою тепловиділення називають залежність долі теплоти х, яка виділяється під час згоряння палива, від кута оберту φ колінчастого вала. її зображують у відносних величинах
де Qвид (φ)_ кількість теплоти, що виділилася з палива під час оберту колінчастого вала на даний кут φ ; Qц - кількість теплоти, що міститься в паливі, яке введено у циліндр за робочий цикл.
Але не вся теплота, що виділяється з палива, використовується корисно на підвищення енергії робочого тіла і здійснення роботи. Частина її віддається у стінки камери згоряння і циліндра, а також витрачається на теплову дисоціацію молекул. Ці витрати враховуються у характеристиці використання теплоти ζ(φ), яка відображається залежністю
де Qвик(φ) - кількість корисно використаної теплоти, що виділилася з палива під час оберту на даний кут φ
Характеристика швидкості тепловиділення визначається як похідна від залежності х(φ) за кутом φ dх(φ) / φ.
Перелічені залежності зображують на одному графіку з розгорнутою індикаторною діаграмою.
Для швидкого згоряння робочої суміші поблизу в.м.т., при якому забезпечене найбільш повне використання теплоти, електричну іскру необхідно подавати, коли поршень трохи не доходить до в.м.т. Кут повороту колінчастого вала до в.м.т., який відповідає проскакуванню іскри, називається кутом випередження запалювання ϴ3.
Він становить 20...55° п.к.в. Після подачі електричної іскри видиме полум'я з'являється не миттєво, тому що для його утворення та підготовки суміші до згоряння потрібен деякий проміжок часу.
На індикаторній діаграмі можна виділити три фази згоряння.
Перша фаза (I), або період окритого горіння - від моменту проскакування електричної іскри до початку різкого збільшення тиску на індикаторній діаграмі. У цей період виникає невеликий осередок горіння у зоні розряду між електродами свічки і згоряє 6... 8% горючої суміші. Тиск газів у циліндрі підвищується в основному за рахунок стиснення поршнем. Тривалість першої фази становить 10...30° п.к.в. (0,0005...0,001 с).
Друга фаза (II) - період швидкого, або видимого горіння. Починається з моменту відриву лінії згоряння від лінії стиснення на індикаторній діаграмі і закінчується в момент досягнення максимального тиску в циліндрі. У цей період відбувається швидке розповсюдження фронту полум'я по всьому об'єму камери згоряння.
Основним фактором, що впливає на швидкість розповсюдження полум'я, є великомасштабна турбулентність. Крім того, фронт полум'я додатково переміщується за рахунок розширення продуктів згоряння, які під впливом нагрівання збільшуються в об'ємі в три-чотири рази. Тривалість другої фази становить 25...30° п.к.в. (0,001...0,002 с). За цей час згоряє 70...80% робочої суміші. Температура продуктів згоряння підвищується до 2200...2500 К, а тиск досягає максимального значення 3,5...5,5 МПа. Друга фаза згоряння характеризує жорсткість роботи двигуна, яку оцінюють за найбільшою швидкістю наростання тиску на кожен градус кута повороту колінчастого вала і максимальним тиском у камері згоряння рмакс = рz. Розрізняють максимальну (dp / dφ)макс та середню ʌр/ʌφ швидкості наростання тиску, де ʌр = р3-р2 - різниця між максимальним тиском циклу (точка 3) і тиском на початку видимого горіння (точка 2); ʌφ- кут повороту колінчастого вала від початку видимого горіння (точка 2) до досягнення максимального тиску (точка 3) циклу. Максимальне наростання тиску визначають в середній частині другої фази згоряння.
Якщо горіння проходить нормально, ʌр/ʌφ = 0,12...0,26МПа/°п.к.в. Коли ʌр/ʌφ <0,1 МПа/°п.к.в., згоряння значною мірою продовжується на лінії розширення, що призводить до погіршення паливної економічності, а коли воно більше ніж 0,26 МПа/°п.к.в., тиск зростає надто швидко. Різке наростання тиску газів має характер удару і призводить до зниження строку служби деталей кривошипно-шатунного механізму, може викликати поломки цих деталей. Тому швидкість наростання тиску ʌр/ʌφ називають жорсткістю роботи двигуна.
Найбільшу площу індикаторної діаграми, а отже, максимальну потужність двигуна маємо, коли максимальний тиск при згорянні досягається при 10...15° п.к.в. після в.м.т, про що свідчить те, що основна маса палива до цього моменту вже згоріла.
Третя фаза (III) називається періодом догоряння. Вона починається від точки максимального тиску газів у циліндрі, яке у третій фазі циклу знижується внаслідок збільшення oб'єму робочої порожнини при розширенні, а також внаслідок збільшення віддачі теплоти від газів до стінок циліндра та його головки, до кінця згоряння. Ця фаза не має чітко визнаного закінчення. На початку цієї фази процес згоряння ще точиться інтенсивно, тому температура продуктів згоряння продовжує підвищуватися до максимального значення (точка 4), а далі знижується, тому що швидкість розповсюдження полум'я біля стінок камери згоряння знижується через підсилення тепловідведення, ослаблення турбулентності та нестачу кисню. Приблизна її тривалість становить 20...35° п.к.в. (0,001...0,0015 с). У цій фазі виділяється 10...15% теплоти, внесеної з паливом, і вона остаточно формує економічність циклу.
Основна частина використаної теплоти підводиться у // фазі (до Pмакс). На початку згоряння швидкість тепловиділення росте повільно і досягає максимуму приблизно в середині згоряння. Максимум швидкості один.
Загальне корисне використання теплоти під час процесу згоряння становить 80...90% від теплоти, що введена у циліндр з паливом. Решта 10...20% теплоти втрачається через неповноту згоряння та дисоціацію, а також внаслідок інтенсивної тепловіддачі у стінки робочої порожнини циліндра.
Спостерігають за процесом згоряння кількома способами. Найбільш наочним є фотографування крізь спеціально вмонтоване у головку циліндра кварцеве вікно, що витримує високий тиск і високу температуру.
Фотографування швидкісною кінокамерою показало, що фронт полум'я являє собою контур, що світиться, відділяючи продукти згоряння від незгорілої суміші. Він має хвилеподібну форму і розповсюджується у різних ділянках об'єму камери згоряння з різними швидкостями.