
- •Электроника Теоретический курс
- •140400 «Электроэнергетика и электротехника»
- •Оглавление
- •Глава 1 Физические основы работы полупроводниковых приборов
- •Глава 2. Полупроводниковые диоды
- •Введение
- •1. Физические основы работы полупроводниковых приборов
- •1.1. Энергетические уровни и зоны
- •1.2. Проводники, полупроводники и диэлектрики
- •1.3. Собственная электропроводность полупроводников
- •1.4. Распределение электронов по энергетическим уровням
- •1.5. Примесная электропроводность полупроводников
- •1 .5.1. Донорные примеси
- •1 .5.2. Акцепторные примеси
- •1.6. Процессы переноса зарядов в полупроводниках
- •1.6.1. Дрейф носителей заряда
- •1.6.2. Диффузия носителей заряда
- •1.7. Электрические переходы
- •1.7.1. Электронно-дырочный переход
- •1.7.2. Вентильное свойство p–n-перехода
- •1.7.3. Вольт-амперная характеристика р–n-перехода
- •1.7.4. Виды пробоев p–n-перехода
- •1.7.5. Ёмкость р–n-перехода
- •1.7.6. Контакт «металл – полупроводник»
- •1.7.7. Контакт между полупроводниками одного типа проводимости
- •1.7.8. Гетеропереходы
- •1.7.9. Свойства омических переходов
- •2. Полупроводниковые диоды
- •2.1. Общие сведения о диодах
- •2.2. Выпрямительные диоды
- •2.2.1. Особенности вольт-амперных характеристик выпрямительных диодов
- •2.3. Импульсные диоды
- •2.4. Туннельные диоды
- •2.5. Обращенный диод
- •2.6. Диоды Шоттки
- •2.7. Варикапы
- •2.8. Стабилитроны
- •2.9. Стабисторы
- •2.10. Применение полупроводниковых диодов
- •2.10.1. Однофазная однополупериодная схема выпрямления
- •2.10.2. Двухполупериодная схема выпрямления со средней точкой
- •2.10.3. Однофазная мостовая схема
- •2.10.5. Параметрический стабилизатор напряжения
- •3. Биполярные транзисторы
- •3.1. Структура и основные режимы работы
- •3.2. Физические процессы в биполярном транзисторе
- •3.3. Схемы включения транзистора
- •3 .3.1. Схема с общей базой
- •3.3.2. Схема с общим эмиттером
- •3.3.3. Схема с общим коллектором
- •3.4. Статические характеристики биполярного транзистора
- •3.4.1. Статические характеристики для схемы с общей базой
- •3.4.2. Статические характеристики для схемы с общим эмиттером
- •3.6. Транзистор как линейный четырехполюсник
- •3.7. Режимы работы транзистора
- •3.8. Предельные режимы работы транзистора
- •3.9. Расчёт рабочего режима транзистора
- •3.10. Динамические характеристики транзистора
- •3.11. Режимы работы усилительных каскадов
- •3.11.1. Режим класса а
- •3.11.2. Режим класса в
- •3.11.3. Режим класса ав
- •3.11.4. Режим класса с
- •3.11.5. Режим класса d
- •3.12. Влияние температуры на работу усилительных каскадов
- •3.12.1. Схема эмиттерной стабилизации
- •3.12.2. Схема коллекторной стабилизации
- •3.13. Составной транзистор
- •3.14. Усилители постоянного тока
- •3.14.1. Дифференциальные усилители
- •3.14.2. Операционный усилитель
- •3.14.3. Схемотехника операционных усилителей
- •3.14.4. Основные схемы на операционных усилителях
- •4. Полевые транзисторы
- •4.1. Полевой транзистор с управляющим p–n-переходом
- •4.2. Схемы включения полевых транзисторов
- •4.3. Статические характеристики полевых транзисторов
- •4.4. Основные параметры полевых транзисторов
- •Полевые транзисторы с изолированным затвором
- •4.5.1. Полевой транзистор с изолированным затвором со встроенным каналом
- •4.5.2. Транзистор с индуцированным (инверсионным) каналом
- •4.5.3. Сравнение мдп- и биполярного транзистора
- •4.6. Комбинированные транзисторы
- •5. Тиристоры
- •5.1. Динисторы
- •5.2. Триодные тиристоры
- •5.2.1. Способы запирания тиристоров
- •Запираемые тиристоры
- •5.3. Симметричные тиристоры
- •5.4. Основные параметры тиристоров
- •5.5. Применение тиристоров
- •5.5.1. Управляемые выпрямители
- •5.5.2. Регуляторы переменного напряжения
- •6. Оптоэлектронные полупроводниковые приборы
- •6.1. Фотоэлектрические приборы на основе внешнего фотоэффекта
- •6.1.1. Фотоэлементы
- •6.1.2. Фотоэлектронные умножители
- •6.2. Фотоэлектрические приборы на основе внутреннего фотоэффекта
- •6.2.1. Фоторезисторы
- •6.2.2. Фотодиоды
- •6.2.3. Фототранзисторы
- •6.2.4. Фототиристоры
- •6.4. Оптоэлектронные устройства
- •1. Условные обозначения и классификация отечественных полупроводниковых приборов
- •2. Условные обозначения и классификация зарубежных полупроводниковых приборов
- •3. Условные графические обозначения полупроводниковых приборов
- •4. Условные буквенные обозначения полупроводниковых приборов в электрических схемах
1.6.2. Диффузия носителей заряда
При неравномерном распределении концентрации носителей заряда в объеме полупроводника и отсутствии градиента температуры происходит диффузия – движение носителей заряда из-за градиента концентрации, т.е. происходит выравнивание концентрации носителей заряда по объему полупроводника.
Из курса физики известно, что плотность потока частиц при диффузии (число частиц, пересекающих в единицу времени единичную площадку, перпендикулярную направлению градиента концентрации) пропорциональна градиенту концентрации этих частиц:
=
-
grad(m),
(1.8)
где – коэффициент диффузии, равный абсолютному значению отношения плотности потока частиц к градиенту их концентрации.
Знаки правой и левой части в выражении (1.8) различны, т.к. вектор градиента концентрации направлен в сторону возрастания аргумента, а частицы диффундируют туда, где их меньше, т.е. против градиента концентрации.
Поскольку любое направленное движение одноименно заряженных частиц есть электрический ток, то плотность электронной составляющей диффузионного тока может быть получена путем умножения правой части выражения (1.8) на заряд электрона. Электроны диффундируют против вектора градиента концентрации и имеют отрицательный заряд. Вследствие этого направление вектора плотности диффузионного тока электронов должно совпадать с направлением вектора градиента концентрации электронов:
,
(1.9),
где
– коэффициент диффузии электронов,
– градиент
концентрации электронов.
Заряд дырок положителен, вследствие этого направление вектора плотности диффузионного тока дырок должно совпадать с направлением их диффузии, т.е. противоположно направлению вектора градиента концентрации дырок. Следовательно, в правой части должен сохраниться знак минус:
,
(1.10),
где
– коэффициент диффузии дырок,
– градиент
концентрации дырок .
Полная плотность диффузионного тока, обусловленная направленным перемещением носителей электрического заряда из мест с большей концентрацией в места, где их концентрация меньше, определяется как
,
(1.11).
Одновременно с процессом диффузии носителей заряда происходит процесс их рекомбинации. Поэтому избыточная концентрация уменьшается в направлении от места источника этой избыточной
концентрации.
Расстояние, на котором при одномерной диффузии в полупроводнике без электрического поля в нем избыточная концентрация носителей заряда уменьшается в результате рекомбинации в e раз, называется диффузионной длиной L. Иначе, это расстояние, на которое диффундирует носитель за время жизни.
Диффузионная длина L связана со временем жизни носителей соотношениями
=
;
=
,
(1.12),
где
и
–
время жизни электронов и дырок,
соответственно.
1.7. Электрические переходы
Электрическим переходом в полупроводнике называется граничный слой между двумя областями, физические характеристики которых имеют существенные физические различия.
Различают следующие виды электрических переходов:
электронно-дырочный, или p–n-переход – переход между двумя областями полупроводника, имеющими разный тип электропроводности;
переходы между двумя областями, если одна из них является металлом, а другая полупроводником p- или n-типа (переход металл – полупроводник);
переходы между двумя областями с одним типом электропроводности, отличающиеся значением концентрации примесей;
переходы между двумя полупроводниковыми материалами с различной шириной запрещенной зоны (гетеропереходы).