Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника. Теоретический курс(ФОЭ) М4.docx
Скачиваний:
0
Добавлен:
11.02.2020
Размер:
5.82 Mб
Скачать

4.5.2. Транзистор с индуцированным (инверсионным) каналом

Устройство такого транзистора показано на рис 4.9. От предыдущего транзистора он отличается тем, что у него нет встроенного канала между областями истока и стока. При отсутствии напряжения на затворе ток между истоком и стоком не потечет ни при какой полярности напряжения, так как один из p–n-переходов будет обязательно заперт. Если подать на затвор н апряжение положительной полярности относительно истока, то под действием возникающего поперечного электрического поля электроны из областей истока и стока, а также из областей кристалла, будут перемещаться в приповерхностную область по направлению к затвору. Когда напряжение на затворе превысит некоторое пороговое значение, то в приповерхностном слое концентрация электронов повысится настолько, что превысит концентрацию дырок в этой области и здесь произойдет инверсия типа электропроводности, т.е. образуется тонкий канал n-типа и в цепи стока появится ток. Чем больше положительное напряжение на затворе, тем больше проводимость канала и больше ток стока.

Т аким образом, такой транзистор может работать только в режиме обогащения. Вид его выходных характеристик и характеристики управления показан на рис. 4.10.

Если кристалл полупроводника имеет электропроводность n-типа, то области истока и стока должны быть p-типа. Такого же типа проводимости будет индуцироваться и канал, если на затвор подавать отрицательное напряжение относительно истока.

Графическое изображение полевых транзисторов с изолированным затвором показано на рис 4.11.

В последнее время МДП-транзисторы всё чаще обозначают термином, заимствованным из зарубежной литературы, – MOSFET

(Metal Oxide Semiconductor Field Effect Transistor).

Выводы:

1. Полевой транзистор с изолированным затвором - это полупроводниковый прибор, в котором управляющий электрод отделен от токопроводящего канала слоем диэлектрика.

2. В отличие от полевого транзистора с управляющим p-n-переходом входное сопротивление полевого транзистора с изолированным затвором остается очень большим при любой полярности поданного на вход напряжения.

3. Полевые транзисторы со встроенным каналом могут работать как в режиме обеднения, так и в режиме обогащения канала свободными носителями заряда.

4. Полевые транзисторы с индуцированным каналом могут работать только в режиме обогащения.

5. Основными достоинствами полевого транзистора являются его большое сопротивление по постоянному току и высокая технологичность. Последнее обусловливает широкое применение полевых транзисторов при разработке микросхем.

4.5.3. Сравнение мдп- и биполярного транзистора

МДП-транзисторы и биполярные транзисторы выполняют одинаковые функции: работают в схеме, или в качестве линейного усилителя, или в качестве ключа. В табл. 4.1 приведено краткое обобщающее сравнение транзисторов этих двух типов.

Таблица 4.1 Свойства биполярных и МДП-транзисторов

Биполярные транзисторы

МДП-транзисторов

Физические свойства

Управляемый физический процесс – инжекция неосновных носителей заряда: изменяется ток управления – изменяется поток инжектированных носителей заряда, что приводит к изменению выходного тока.

Управляемый физический процесс – эффект поля, вызывающий изменение концентрации носителей заряда в канале: изменяется управляющее напряжение – изменяется проводимость канала, что приводит к изменению выходного тока.

Выходной ток обеспечивается носителями

заряда обоих знаков (дырками и электронами).

Выходной ток обеспечивается основными носителями заряда одного знака (или дырками, или электронами).

Низкая теплостойкость: с увеличением тока растет температура структуры, что приводит к большему увеличению тока.

Высокая теплостойкость: рост температуры структуры приводит к увеличению сопротивления канала, и ток уменьшается.

Особенности эксплуатации

Прибор управляется током, т.к. на входе

имеется прямосмещенный p–n-переход и

входное сопротивление мало.

Прибор управляется напряжением, входное сопротивление очень велико, т.к. входная цепь от выходной цепи изолирована диэлектриком.

Относительно небольшой коэффициент усиления по току.

Очень большой коэффициент усиления по току.

Необходимость специальных мер по повышению помехоустойчивости.

Высокая помехоустойчивость.

Высокая вероятность саморазогрева и вторичного пробоя: сужение области безопасной работы (ОБР).

Низкая вероятность теплового саморазогрева и вторичного пробоя – расширение ОБР.

Высокая чувствительность к токовым перегрузкам.

Низкая чувствительность к токовым перегрузкам.

В настоящее время полевые транзисторы вытесняют биполярные в ряде применений. Это связано с тем, что, во-первых, управляющая цепь полевых транзисторов потребляет ничтожную энергию, т.к. входное сопротивление этих приборов очень велико. Как правило, усиление мощности и тока в МДП-транзисторах много больше, чем в биполярных. Во-вторых, вследствие того, что управляющая цепь изолирована от выходной цепи, значительно повышаются надежность работы и помехоустойчивость схем на МДП-транзисторах. В-третьих, МДП-транзисторы имеют низкий уровень собственных шумов, что связано с отсутствием инжекции носителей заряда. В-четвертых, полевые транзисторы обладают более высоким быстродействием, т.к. в них нет инерционных процессов накопления и рассасывания носителей заряда. В результате мощные МДП-транзисторы все больше вытесняют биполярные транзисторы там, где требуется высокое быстродействие и повышенная надежность работы.

Однако МДП-транзисторы имеют и недостатки. Во-первых, вследствие высокого сопротивления канала в открытом состоянии МДП-транзисторы имеют большее падение напряжения, чем падение напряжения на насыщенном биполярном транзисторе. Во-вторых, МДП-транзисторы имеют существенно меньшее значение предельной температуры структуры, равное 150 (для биполярных транзисторов 200 ).

К числу основных недостатков мощных МДП-транзисторов также следует отнести вредное влияние на его работу ряда паразитных элементов, возникающих в структуре транзистора на стадии его изготовления. Все базовые ячейки мощного МДП-транзистора содержат внутренний «паразитный» биполярный n–p–n-транзистор (рис. 4.12), образованный n+ -истоком (эмиттер), p-областью инверсного канала (база) и эпитаксиальным n-слоем (коллектор). Паразитный транзистор фактически параллельно подключен к рабочему каналу МДП-транзистора.

Для сохранения положительных свойств МДП- транзистора и исключения начала работы биполярного транзистора часть p-области всегда

п одключают к металлизированному контакту истока (это эквивалентно закорачиванию эмиттерного перехода паразитного транзистора). Биполярный транзистор оказывается запертым и не оказывает существенного влияния на работу полевого транзистора. Однако быстрый спад или, наоборот, рост напряжения «сток – исток» полевого транзистора, что является обычным в динамических режимах, может привести к несанкционированному открытию паразитного транзистора, а это, в свою очередь, может привести к выходу из строя всей силовой схемы.

Подключение p-области транзистора к истоку создает еще один дополнительный элемент – обратновключенный диод. Поэтому МДП-транзистор проектируют таким образом, что бы данный диод соответствовал аналогичным показателям МДП-транзистора и имел малое время восстановления запирающих свойств.