
- •Елементи лінійної алгебри і аналітичної геометрії.
- •Визначники
- •Числа, що утворюють визначник, називаються його елементами та позначаються подвійними індексами аi j, де I-номер рядка, j –номер стовпця.
- •Властивості визначників
- •Мінори та алгебраїчні доповнення
- •Обчислення визначників
- •1.2. Матриці Основні поняття
- •Дії з матрицями
- •Обернена матриця
- •Властивості оберненої матриці:
- •2.1. Формули Крамера
- •2.2. Метод оберненої матриці
- •Лекція 3. Елементи векторної алгебри
- •Розв’язання.
- •3.1. Лінійні операції з векторами
- •Лекція 4. Аналітична геометрія на площині
- •4.1. Довжина відрізка та ділення відрізка у даному відношенні.
- •Розглянемо відрізок ав, заданий координатами точок та . Точка поділяє відрізок ав у відношенні: (рис 1.1).
- •Координати точки с х та у визначаються формулами:
- •4.2. Рівняння прямої
- •Криві другого порядку
- •Границі і диференціальне числення функцій Лекція 5. Границі
- •Означення границі
- •Властивості нескінченно малих величин
- •Нескінченно великі величини
- •Властивості нескінченно великих величин
- •Границя функції
- •Порівняння нескінченно малих
- •Основні еквівалентності при
- •Визначні границі
- •Неперервність функції
- •Властивості функцій, неперервних у точці.
- •Типи точок розриву
- •Лекція 6. Похідна і диференціал
- •Задачі, що приводять до поняття похідної
- •Означення похідної
- •Необхідна умова диференційовності функції
- •Основні формули диференціювання
- •Основні правила диференціювання
- •. Неявна функція та її диференціювання
- •Контрольний тест.
- •Логарифмічне диференціювання
- •Похідні вищих порядків
- •2.6. Диференціал
- •Лекція 7. Дослідження функцій і побудова графіків
- •7.1. Інтервали монотонності і екстремум функції
- •7.2. Опуклість і угнутість графіка функції. Точки перегину
- •7.3. Асимптоти кривої
- •7.4. Загальна схема дослідження функції. Побудова графіків функцій
- •Найбільше і найменше значення функції на відрізку
- •8. Функції багатьох змінних
- •8.1 Частинні похідні і повний диференціал
- •8.2. Екстремум функцій двох змінних
- •Інтегральне числення Лекція 9. Невизначений інтеграл
- •9.1. Поняття невизначеного інтеграла
- •9.2. Таблиця основних інтегралів
- •9.3. Безпосереднє інтегрування
- •9.4. Метод заміни змінної (метод підстановки)
- •Розв’язання
- •Розв’язання
- •9.5. Інтегрування частинами
- •9.6. Інтеграли від виразів з квадратним тричленом
- •9.7. Інтеграли від деяких ірраціональних функцій
- •9.8. Інтегрування деяких класів тригонометричних функцій
- •Лекція 10. Визначений інтеграл
- •10.1. Основні поняття
- •10.2. Методи обчислення визначеного інтеграла
- •Лекція 11. Застосування визначеного інтеграла
- •11.1. Обчислення площ плоских фігур
- •Лекція 12. Невласні інтеграли
- •12.1. Інтеграли з нескінченними межами (невласні інтеграли I роду)
- •12.2. Інтеграл від необмеженої функції (невласні інтеграли II роду)
- •Лекція 13.Звичайні диференціальні рівняння
- •13.1 Основні поняття
- •13.2. Диференціальні рівняння з відокремлюваними змінними
- •13.3. Однорідні диференціальні рівняння
- •13.4. Лінійні диференціальні рівняння
- •1. Метод Бернуллі
- •2. Метод Лагранжа (метод варіації довільної сталої)
- •13.5. Лінійні однорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами
- •Лекція 14. Ряди
- •14.1. Поняття числового ряду. Сума ряду
- •14.2. Збіжність числових рядів. Необхідна ознака збіжності ряду
- •Достатні ознаки збіжності
- •Приклад 4.20. Визначити збіжність ряду .
- •Приклад 4.22. Дослідити збіжність ряду
- •Інтегральна ознака Коші.
- •Приклад 4.23. Дослідити збіжність ряду
- •14.4. Ряд, знаки членів якого чергуються
- •1 4.5. Степеневі ряди
- •Розв’язання. Знайдемо розкладення в ряд Тейлора функції за формулою (4.26). Знаходимо похідні порядку та їх значення при :
- •14.7. Використання рядів у наближених обчисленнях
1.2. Матриці Основні поняття
Розглянемо ще один математичний об’єкт, пов’язаний із системою рівнянь (1.1).
Означення. Матрицею називається прямокутна таблиця чисел, яка має m рядків і n стовпців. Якщо повернутися до системи рівнянь (1.1), то коефіцієнти при невідомих у лівій частині якраз і утворюють таку прямокутну таблицю:
.
Числа
називаються елементами
матриці,
а запис
означає її розмір.
Зауважимо, що на першому місці в цьому
запису зазначено кількість рядків
матриці, а на другому — кількість
стовпців. Наприклад, запис розміру
матриці
означає, що в ній п’ять рядків і три
стовпці. Якщо кількість рядків матриці
дорівнює кількості її стовпців, то
матриця називається квадратною.
Дві матриці рівні між собою, якщо вони мають однаковий розмір і всі їх відповідні елементи рівні між собою.
Елементи
з двома однаковими індексами a11,
a22,
a33,
... ann
утворюють
головну
діагональ матриці.
Якщо
,
то матриця називається симетричною.
Квадратна матриця, в якої елементи головної діагоналі дорівнюють одиниці, а всі інші нулю, називається одиничною матрицею:
.
Коли всі елементи матриці, що містяться по один бік від головної діагоналі, дорівнюють нулю, то матриця називається трикутною.
Кожній квадратній матриці можна поставити у відповідність визначник, який складається з тих самих елементів.
Якщо такий визначник відмінний від нуля, то матриця називається неособливою, або невиродженою. Якщо визначник дорівнює нулю, то матриця особлива, або вироджена.
Дії з матрицями
Сумою матриць одного й того самого порядку
і
називається матриця
;
, будь-який елемент якої дорівнює сумі відповідних елементів матриць А і В:
. Наприклад обидві матриці
,
мають розмір
, тому за означенням можна утворити їх суму — матрицю
.
Добутком матриці на деяке число
називається така матриця С, кожен елемент якої
утворюється множенням відповідних елементів матриці А на
,
.
Приклад
1.4.
,
.
Очевидно, що для суми матриць і добутку матриць на число виконуються рівності:
;
;
.
Добутком матриці
розміру
на матрицю
розміру
називається така матриця
розміру
,
,
кожний елемент
якої
можна знайти за формулою:
.
Кожний елемент матриці С утворюється як сума добутків відповідних елементів і-го рядка матриці А на відповідні елементи j-го стовпця матриці В, тобто за схемою:
Зазначимо, що в результаті множення дістанемо матрицю розміру .
З
означення випливає, що добуток матриць
взагалі некомутативний:
.
Приклад 1.5. Обчислити суму матриць А і В:
Розв’язання.
Приклад 1.6. Знайти добуток матриць А і В:
Розв’язання.
Якщо АВ= ВА, то матриці називаються переставними.
Одинична матриця переставна для всіх матриць її розмірності.
Транспонуванням матриці називається математична дія, коли рядки матриці А записуються стовпцями. Ця дія позначається як АТ, а матриця АТ називається транспонованою.
Приклад
1.7.
Транспонувати матрицю
.
Розв’язання.
.