
- •Часть I
- •В.Н. Колосов,
- •В.И. Иваненко,
- •Глава 1. Металлы 10
- •Глава 4. Свойства материалов 55
- •Введение
- •Основные понятия
- •Общие требования, предъявляемые к материалам в зависимости от условий использования, применения или эксплуатации
- •Системный подход к изучению строения, структуры и свойств материалов
- •Глава 1. Металлы
- •1.1. Особенности атомно-кристаллического строения металлов
- •1.2. Понятие об изотропии и анизотропии
- •1.3. Аллотропия, или полиморфные превращения
- •1.4. Магнитные превращения
- •1.5. Строение реальных металлов. Дефекты кристаллического строения
- •1.6. Кристаллизации металлов
- •1.6.1. Механизм и закономерности кристаллизации металлов
- •1.6.2. Условия получения мелкозернистой структуры
- •1.6.3. Строение металлического слитка
- •1.7. Методы исследования металлов
- •1.7.1. Определение химического состава
- •1.7.2. Изучение структуры
- •1.7.3. Физические методы исследования
- •Глава 2. Металлические сплавы
- •2.1. Особенности строения, кристаллизации и свойств сплавов
- •2.2. Классификация сплавов твердых растворов
- •2.3. Кристаллизация сплавов
- •2.4. Диаграммы состояния двухкомпонентных сплавов
- •2.4.1. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)
- •2.4.2. Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии (механические смеси)
- •2.4.3. Диаграммы состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии с эвтектическим превращением
- •2.4.4. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии с перитектическим превращением
- •2.4.5. Диаграмма состояния сплавов, компоненты которых образуют химические соединения
- •2.4.6. Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
- •2.4.7. Диаграмма состояния сплавов с полиморфным превращением одного из компонентов
- •2.4.8. Диаграмма состояния сплавов с полиморфными превращениями компонентов и эвтектоидным превращением
- •2.4.9. Связь между свойствами сплавов и типом диаграммы состояния
- •Глава 3. Структура неметаллических материалов
- •3.1. Строение полимеров
- •3.1.1. Классификации полимеров
- •3.1.2. Надмолекулярная структура полимеров
- •3.1.2.1. Структура аморфных полимеров
- •3.1.2.2. Структура кристаллических полимеров
- •3.1.3. Физические состояния аморфного полимера
- •3.1.4. Гибкость макромолекул
- •3.2. Строение стекла
- •3.3. Строение керамики
- •Глава 4. Свойства материалов
- •4.1. Физические свойства
- •4.2. Механические свойства
- •4.2.1. Физическая природа деформации металлов
- •4.2.2. Дислокационный механизм пластической деформации
- •4.2.3. Разрушение металлов
- •4.2.4. Механические свойства, определяемые при статических нагрузках
- •4.2.4.1. Испытания на растяжение
- •4.2.4.2. Испытания на изгиб
- •4.2.4.3. Испытания на твердость
- •4.2.5. Механические свойства, определяемые при динамических нагрузках
- •1 − Образец; 2 − маятник; 3 − шкала; 4 − стрелка шкалы; 5 − тормоз
- •4.2.6. Механические свойства, определяемые при переменных (циклических) нагрузках
- •4.3. Электрические свойства
- •4.3.1. Общие сведения
- •4.3.2. Основные характеристики диэлектрических материалов
- •4.4. Магнитные свойства
- •4.4.1. Общие сведения
- •4.4.2. Основные магнитные характеристики материалов
- •4.5. Технологические свойства
- •4.6. Эксплуатационные свойства
- •4.7. Свойства веществ и материалов в основных физико-химических процессах
- •4.7.1. Старение
- •4.7.2. Изнашивание
- •4.7.3. Диффузия
- •4.7.4. Коррозия
- •4.8. Способы воздействия на свойства веществ и материалов
- •4.8.1. Механическая обработка
- •4.8.1.1. Общие сведения
- •4.8.1.2. Деформация поликристаллов
- •4.8.1.3. Деформация полимеров
- •4.8.1.4. Деформация аморфных сплавов
- •4.8.2. Термическая обработка
- •4.8.2.1. Отжиг
- •4.8.2.2. Закалка
- •4.8.2.3. Отпуск и искусственное старение
- •4.8.3. Термомеханическая обработка
- •4.8.3.1. Тепломеханическая обработка металлов и сплавов
- •4.8.3.2. Термомеханическая обработка аморфных сплавов
- •4.8.4. Химико-термическая обработка
- •Список использованных источников
- •Часть I
- •184200, Мурманская обл., г. Апатиты, ул. Космонавтов, 3.
1.1. Особенности атомно-кристаллического строения металлов
Металлы − один из классов конструкционных материалов, характеризующийся определенным набором свойств:
«металлический блеск» (хорошая отражательная способность);
пластичность;
высокая теплопроводность;
высокая электропроводность.
Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико, и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов. Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».
Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определенным порядком − периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллической решетки. Другими словами, кристаллическая решетка − это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело (рис. 1.1).
Элементарная ячейка — элемент объема из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.
Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:
• размеры ребер элементарной ячейки а, b, с, называемые периодами решетки ( расстояния между центрами ближайших атомов);
• углы между осями (α, β, γ);
• координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке;
• базис решетки − количество атомов, приходящихся на одну элементарную ячейку решетки;
• плотность упаковки атомов в кристаллической решетке − объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами, к объему ячейки (для объемно-центрированной кубической решетки − 0,68, для гранецентрированной кубической решетки − 0,74).
|
Рис. 1.1. Схема кристаллической решетки |
Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток.
Основными типами кристаллических решеток являются:
1) гранецентрированная кубическая (ГЦК) (см. рис. 1.2а), в которой атомы располагаются в вершинах куба и по центру каждой из 6 граней (Ag, Au, Feγ).
2) объемно-центрированная кубическая (ОЦК) (см. рис. 1.2б), где атомы располагаются в вершинах куба и в его центре (V, W, Ti, Feα).
3) гексагональная, в основании которой лежит шестиугольник:
простая − атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);
плотноупакованная (ГПУ) − имеются 3 дополнительных атома в средней плоскости (цинк) (см. рис. 1.2в).
а) б) в)
Рис. 1.2. Основные типы кристаллических решеток:
а − гранецентрированная кубическая; б − объемно-центрированная кубическая;
в − гексагональная плотноупакованная