
- •Часть I
- •В.Н. Колосов,
- •В.И. Иваненко,
- •Глава 1. Металлы 10
- •Глава 4. Свойства материалов 55
- •Введение
- •Основные понятия
- •Общие требования, предъявляемые к материалам в зависимости от условий использования, применения или эксплуатации
- •Системный подход к изучению строения, структуры и свойств материалов
- •Глава 1. Металлы
- •1.1. Особенности атомно-кристаллического строения металлов
- •1.2. Понятие об изотропии и анизотропии
- •1.3. Аллотропия, или полиморфные превращения
- •1.4. Магнитные превращения
- •1.5. Строение реальных металлов. Дефекты кристаллического строения
- •1.6. Кристаллизации металлов
- •1.6.1. Механизм и закономерности кристаллизации металлов
- •1.6.2. Условия получения мелкозернистой структуры
- •1.6.3. Строение металлического слитка
- •1.7. Методы исследования металлов
- •1.7.1. Определение химического состава
- •1.7.2. Изучение структуры
- •1.7.3. Физические методы исследования
- •Глава 2. Металлические сплавы
- •2.1. Особенности строения, кристаллизации и свойств сплавов
- •2.2. Классификация сплавов твердых растворов
- •2.3. Кристаллизация сплавов
- •2.4. Диаграммы состояния двухкомпонентных сплавов
- •2.4.1. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)
- •2.4.2. Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии (механические смеси)
- •2.4.3. Диаграммы состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии с эвтектическим превращением
- •2.4.4. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии с перитектическим превращением
- •2.4.5. Диаграмма состояния сплавов, компоненты которых образуют химические соединения
- •2.4.6. Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
- •2.4.7. Диаграмма состояния сплавов с полиморфным превращением одного из компонентов
- •2.4.8. Диаграмма состояния сплавов с полиморфными превращениями компонентов и эвтектоидным превращением
- •2.4.9. Связь между свойствами сплавов и типом диаграммы состояния
- •Глава 3. Структура неметаллических материалов
- •3.1. Строение полимеров
- •3.1.1. Классификации полимеров
- •3.1.2. Надмолекулярная структура полимеров
- •3.1.2.1. Структура аморфных полимеров
- •3.1.2.2. Структура кристаллических полимеров
- •3.1.3. Физические состояния аморфного полимера
- •3.1.4. Гибкость макромолекул
- •3.2. Строение стекла
- •3.3. Строение керамики
- •Глава 4. Свойства материалов
- •4.1. Физические свойства
- •4.2. Механические свойства
- •4.2.1. Физическая природа деформации металлов
- •4.2.2. Дислокационный механизм пластической деформации
- •4.2.3. Разрушение металлов
- •4.2.4. Механические свойства, определяемые при статических нагрузках
- •4.2.4.1. Испытания на растяжение
- •4.2.4.2. Испытания на изгиб
- •4.2.4.3. Испытания на твердость
- •4.2.5. Механические свойства, определяемые при динамических нагрузках
- •1 − Образец; 2 − маятник; 3 − шкала; 4 − стрелка шкалы; 5 − тормоз
- •4.2.6. Механические свойства, определяемые при переменных (циклических) нагрузках
- •4.3. Электрические свойства
- •4.3.1. Общие сведения
- •4.3.2. Основные характеристики диэлектрических материалов
- •4.4. Магнитные свойства
- •4.4.1. Общие сведения
- •4.4.2. Основные магнитные характеристики материалов
- •4.5. Технологические свойства
- •4.6. Эксплуатационные свойства
- •4.7. Свойства веществ и материалов в основных физико-химических процессах
- •4.7.1. Старение
- •4.7.2. Изнашивание
- •4.7.3. Диффузия
- •4.7.4. Коррозия
- •4.8. Способы воздействия на свойства веществ и материалов
- •4.8.1. Механическая обработка
- •4.8.1.1. Общие сведения
- •4.8.1.2. Деформация поликристаллов
- •4.8.1.3. Деформация полимеров
- •4.8.1.4. Деформация аморфных сплавов
- •4.8.2. Термическая обработка
- •4.8.2.1. Отжиг
- •4.8.2.2. Закалка
- •4.8.2.3. Отпуск и искусственное старение
- •4.8.3. Термомеханическая обработка
- •4.8.3.1. Тепломеханическая обработка металлов и сплавов
- •4.8.3.2. Термомеханическая обработка аморфных сплавов
- •4.8.4. Химико-термическая обработка
- •Список использованных источников
- •Часть I
- •184200, Мурманская обл., г. Апатиты, ул. Космонавтов, 3.
1.7.3. Физические методы исследования
1. Термический анализ основан на явлении теплового эффекта. Фазовые превращения в сплавах сопровождаются тепловым эффектом, в результате на кривых охлаждения сплавов при температурах фазовых превращений наблюдаются точки перегиба или температурные остановки. Данный метод позволяет определить критические точки.
2. Дилатометрический метод.
При нагреве металлов и сплавов происходит изменение объема и линейных размеров − тепловое расширение. Если изменения обусловлены только увеличением энергии колебаний атомов, то при охлаждении размеры восстанавливаются. При фазовых превращениях изменения размеров необратимы.
Метод позволяет определить критические точки сплавов, температурные интервалы существования фаз, а также изучать процессы распада твердых растворов.
Магнитный анализ. Используется для исследования процессов, связанных с переходом из парамагнитного состояния в ферромагнитное (или наоборот), причем возможна количественная оценка этих процессов.
Глава 2. Металлические сплавы
Под сплавом понимают вещество, полученное сплавлением двух или более элементов. Возможны другие способы приготовления сплавов: спекание, электролиз, возгонка. В этом случае вещества называются псевдосплавами. Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называется металлическим сплавом. Сплавы обладают более разнообразным комплексом свойств, которые изменяются в зависимости от состава и метода обработки.
2.1. Особенности строения, кристаллизации и свойств сплавов
Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях. При образовании сплавов в процессе их затвердевания возможно различное взаимодействие компонентов.
В зависимости от характера взаимодействия компонентов различают сплавы:
1) механические смеси;
2) химические соединения;
3) твердые растворы.
1. Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.
Образуются между элементами, значительно различающимися по строению и свойствам, когда сила взаимодействия между однородными атомами больше, чем между разнородными. Сплав состоит из кристаллов входящих в него компонентов (рис.2.1), при этом в сплавах сохраняются кристаллические решетки компонентов. В механической смеси каждый из компонентов сохраняет свои специфические свойства.
|
Рис. 2.1. Схема микроструктуры механической смеси |
Механические смеси образуются путем срастания кристаллитов между собой при кристаллизации и называются соответственно:
эвтектика или перитектика — при образовании в раздельной первичной кристаллизации;
эвтектоид или перитектоид — при образовании во вторичной кристаллизации.
Эвтектика, эвтектоид, перитектика и перитектоид возникают при соответствующих фазовых превращениях.
Эвтектическим превращением в сплавах называется такое, при котором происходит одновременная кристаллизация двух фаз при постоянной и самой низкой для данной системы сплавов температуре первичной кристаллизации, а эвтектоидное превращение соответствует аналогичному процессу при вторичной кристаллизации.
Эвтектика представляет собой равномерно чередующиеся пластинки структурных компонентов, образованных из двух или более фаз. Иногда фазы в эвтектике непрерывно разветвлены друг в друге. В эвтектике могут присутствовать также обособленные кристаллы твердых растворов или химических соединений.
Структуры эвтектики и эвтектоида схожи, но эвтектоиды являются более дисперсными структурными составляющими, так как образуются при распаде твердого раствора в процессе вторичной кристаллизации, когда процессы диффузии протекают более медленно.
При перитектическом превращении в сплавах, в отличие от эвтектического, кристаллизуются одновременно не две фазы, а только одна, образующаяся за счет ранее выделившейся твердой фазы и жидкой части сплава определенного состава. Выявление структуры перитектики затруднено, как правило, тем, что перитектическое превращение в условиях охлаждения сплавов технических металлов обычно не протекает до конца.
2. Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.
Особенности этих сплавов:
постоянство состава, то есть сплав образуется при определенном соотношении компонентов, химическое соединение обозначается AnВm4;
образуется специфическая кристаллическая решетка с правильным упорядоченным расположением атомов, отличающаяся от решеток элементов, составляющих химическое соединение (рис. 2.2);
ярко выраженные индивидуальные свойства;
постоянство температуры кристаллизации, как у чистых компонентов.
|
Рис. 2.2. Кристаллическая решетка химического соединения |
Сплавы твердые растворы − это сплавы, однофазные в твердом состоянии, в которых соотношения между компонентами могут изменяться и один из компонентов (растворитель) сохраняет свою кристаллическую решетку, а атомы другого компонента (или других) располагаются в решетке этого компонента, изменяя ее размеры (периоды решетки). Они являются кристаллическими веществами и состоят из однородных зерен (рис. 2.3).
|
Рис. 2.3. Схема микроструктуры твердого раствора |