
- •Content
- •Preface
- •Biology as Science and Important Part of Our Life
- •Applying Life Science to Your Life
- •Careers, hobbies and element of personal culture
- •The scientific method
- •1. Basics of organisation of life
- •1.1. Nature and Properties of Life. Cell Theory
- •1.2. Energy and Energy Conversions. Chemistry aspects of life organisation
- •Ionic bonds
- •Ice floats
- •1.3. Life as Phenomenon of Universe
- •Fig. 1.6. Dna structure
- •2. Elements of general biology
- •2.1. Introduction to Cell Biology
- •Internal membranes
- •Pumping Molecules Through Cell Membranes (active transport)
- •Fig. 2.1. Diffusion into and out of cells
- •Fig. 2.2. Active transport of two different ions
- •Autotrophic and Heterotrophic Organisms
- •Stored energy from the sun
- •The role of photosynthetic pigments
- •Identifying Photosynthetic Reactants and Products
- •Respiration in the cells
- •Comparison of photosynthesis and respiration.
- •2.2. Introduction in Genetics
- •Fig. 2.3. Normal human (female) karyotype
- •Fig. 2.4. Dna ladder separates to form two identical dna ladders
- •Mitosis
- •Incomplete Dominance is Neither Dominant nor Recessive
- •X Chromosomes & y Chromosomes
- •Fig. 2.5. Process of meiosis
- •Fig. 2.6. Process of meiosis (continuation)
- •Inheritance of Blood Types
- •Variations and Mutations
- •Initiation of transcription requires a promoter and rna polymerase
- •2.3. The Introduction to Theory of Evolution
- •2.3.3. Classification and Identification
- •The system of Linnaeus
- •The scientific name
- •Bases of Modern Classification
- •Categories of Classification
- •Subdivisions of the Five Kingdoms
- •Identifying Photosynthetic Reactants and Products
- •3. Aspects of biology of viruses, monera, protists, algae, fungi and lichens
- •3.1. Viruses
- •3.1.1. Discovery of viruses. Sizes of viruses
- •Viruses differ greatly in size. They range in length from 0.01 to over 0.3 micrometers; yet over 500 of them can fit on the point of the pin.
- •3.1.2. Characteristics of viruses
- •3.1.3. Kinds of viral infections
- •3.1.4. Defenses against viral infections
- •3.2. Kingdom Monera. Bacteria
- •3.2.1. Bacteria are organisms
- •3.2.2. Main groupes of bacteria Archaebacteria
- •Photosynthetic bacteria
- •Chemosynthetic bacteria
- •Cyanobacteria
- •Some bacteria are helpful
- •Some bacteria are harmful
- •Prevention and control of bacterial disease
- •3.3. Plantlike Protists. Kingdom Protista
- •3.4. Algae
- •Plants that live in water
- •Economic importance of algae
- •3.5. Fungi
- •3.5.1. Terrestrial molds
- •3.5.2. Water molds
- •3.5.3. Slime molds
- •3.5.4. Club fungi
- •3.5.5. Sac fungi
- •3.5.6. Imperfect fungi
- •3.5.7. Fungi and habitats
- •3.5.8. Adaptations to life on land
- •3.5.9. Ecological and economic roles
- •3.6. Lichens
- •3.6.1.Structure
- •3.6.2. Habitats
- •3.6.3. Nutrition
- •3.6.4. Ecological role
- •3.6.5. Reproduction
- •Summary and test questions
- •4. Botany
- •Nonvascular and vascular plants
- •Seed plants
- •4.1. Bryophytes and Mosses
- •4.1.2. Mosses
- •4.2. Ferns
- •4.2.1. Physical structure
- •4.2.2. Life cycle of ferns
- •4.3. Gymnosperms
- •4.3.1. Conifers
- •Importance of conifers
- •4.3.2. Cycads
- •4.3.3. Ginkgoes
- •4.3.4. Gnetales
- •4.4. Angiosperms
- •Kinds of plant tissues
- •Root structure
- •Leaves and water loss
- •Flowers and sexual reproduction
- •Table 4.1 Comparative characteristics of monocots and dicots
- •5.1. Phylum Protozoa
- •5.1.4. Class Sporozoa
- •5.2. Phylum Porifera: Sponges
- •5.3. Phylum Coelenterata
- •5.4. Phylum Plathelminthes. Flatworms
- •5.5. Phylum Nemathelminthes: Roundworms
- •5.6. Phylum Annelids
- •5.7. Phylum Molluska: Mollusks
- •5.8. Phylum Arthropoda
- •Incomplete Metamorphosis
- •5.9. Phylum Chordata
- •Classification and Characteristics of Amphibians
- •The 4,500 species of mammals live throughout the world. Mammals can live in different environments because their flexible body plan has allowed the various species to undergo many special adaptations.
- •5.10. Classification of Kingdom Animalia
- •6. Human Biology
- •Introduction
- •6.1. The skeleton system
- •6.2. The muscular system
- •6.3. The integumentary system
- •6.4. The respiratory system
- •6.5. The excretory system
- •6.6. Nervous control and coordination
- •Introduction
- •6.7. Sense organs
- •Introduction
- •Vision, Hearing, and Balance
- •6.8. Endocrine system
- •Introduction
- •6.9. Circulatory system
- •Introduction
- •Immune Response
- •Immunity
- •6.10. Nutrition and digestion
- •Vitamins
- •Vitamins and Minerals
- •6.11. Reproduction and development
- •Introduction
- •Influence of external environmental factors on human health
- •6.12. World populationand its regulation
- •World population, total quantity and annual increase, 1950–2000 (us Bureau, 2001)
- •7. Biodiversity as phenomenon of life
- •Introduction
- •7.1. Biodiversity and problems of its preservation
- •Biodiversity components and levels (Global, 1995)
- •Quantitative assessment of the species diversity of the planet (Global, 2001)
- •7.2. Biodiversity conservation in Ukraine: conceptual developments and challenges
- •7.3. Protected Areas and Econet of Ukraine as instruments of conservation and innovation
- •7.4. Transboundary protected areas and opportunities for cooperation
- •Carpathians case (successful story)
- •The greening of local environment
- •Conclusion
- •Annex 1. Classification of living organisms
- •Bibliography
- •Additional references
- •Other information resources
- •Terms and definition index
4.1.2. Mosses
Mosses are small, soft plants that grow in clumps close together. They grow in a wide variety of moist, shaded habitats – on the sides of trees, in sidewalk cracks, on rocks and logs. Some mosses form a dense carpet on the floor of coniferous forests. The greatest member of mosses grows in areas of high humidity, such as the Olympic and Great Smoky Mountains, the rain forests of the tropics and in colder regions as well.
The body of a moss is composed of “leaves” arranged in a spiral around a central stem. Moss plants range in size from 1 or 2 cm (0.4 to 0.8 in.) to more than a meter (39 in.) long. Moss plants may stand erect or trail along the ground.
As in all bryophytes, the dominant generation in the moss life cycle is the haploid gametophyte. This form is the familiar green, leaf like moss plant. The sporophyte generation of mosses, which appears as a stalk tipped with a spore-bearing capsule, does not photosynthesize. Because it is dependent on the dominant generation for nutrition, the sporophyte remains physically attached to the gametophyte throughout its life.
Life cycle begins when the sporophyte (2n) releases spores. When the environment is suitably warm and moist, a spore (n) will germinate and produce a horizontal filament called the protonema. Protonema cells contain chloroplasts and carry out photosynthesis. As the protonema grows, it periodically produces buds that develop into additional gametophytes. Gametophytes produce gametes through mitosis. Sperm are produced in the male reproductive structure called antheridia. Each female reproductive structure or archegonia, contains an egg cell. In some species of mosses, both antheridia and archegonia are found on the same plant, but other species have separate male and female plants.
Because bryophytes transport materials by osmosis and diffusion, they need a large and constant supply of water to survive. Bryophytes also need water for sexual reproduction. Like algal sperm, bryophyte sperm must swim to the egg to fertilize it. For these reasons, most bryophytes grow in moist environments such as riverbeds, rain forests and low-tying areas where water tends to collect.
Because mosses are among the first plants to grow in otherwise barren areas, they are sometimes called pioneer plants.
They colonized tiny bits of rock. This process slowly creates new soil. Mosses rhizoids help prevent erosion by anchoring existing soil. When the bryophytes die, their bodies add organic matter to the soil. Over time, in extremely fertile mixture is formed called topsoil. Many vascular plants need topsoil in which to grow.
One kind of moss, sphagnum moss is commercially important. Sphagnum is the main component in peat moss, an organic fuel used in homes in Ireland, Canada, and other Northern countries. Peat is made up of the decomposing bodies of bryophytes.
4.2. Ferns
Approximately 12,000 species of ferns have been identified, more than any other group of seedless vascular plants. Most ferns prefer moist, fertile soil and live in the tropics but ferns have adapted to almost every climate. Certain types of ferns are even found in every cold areas north of the Arctic Circle or high atop mountains. Ferns have a wide range of sizes as well. Some are very small plants but others grow as tall as trees.