- •Шкала оцінювання
- •Економетрика Зміст дисципліни за темами Тема 1. Концептуальні аспекти економетричного моделювання економіки
- •Тема 2. Принципи побудови економетричних моделей. Парна та множинна лінійна регресія
- •Тема 3: Нелінійні економетричні моделі
- •Тема 4. Фіктивні змінні в економетричних моделях
- •Тема 5. Мультиколінеарність
- •Тема 6. Автокореляція залишків
- •Тема 7. Гетероскедастичність залишків
- •Приклади типових завдань
- •Тема: Соціально – економічні системи, методи дослідження та моделювання
- •2. Математична модель економічного об’єкту
- •Критерії вибору „хорошої моделі”:
- •3. Класифікація економіко-математичних моделей
- •4. Основні етапи економіко – математичного моделювання
- •Економетрика
- •2. Об'єкт, предмет, мета і завдання економетрії
- •3. Основні етапи економетричного аналізу
- •4. Економічні задачі, які розв'язують за допомогою економетричних методів
- •5. Основні етапи зародження та розвитку економетрії
- •Тема: Регресійні моделі
- •1. Поняття регресії
- •2. Парна лінійна регресія
- •3. Метод найменших квадратiв (мнк)
- •4. Дисперсійний аналіз моделі
- •Лабораторна робота №1 «Економетрична модель простої регресії»
- •1. Постановка задачі.
- •3. Розрахунок моделей
- •Знаходження оцінок параметрів моделі методом найменших квадратів
- •5. Графік моделі у „хмарі” розсіювання
- •6. Дисперсійний аналіз лінійної моделі:
- •7. Значущість оцінок параметрів і моделі:
- •8. Прогноз:
- •9. Аналіз лінійної моделі:
- •Лабораторна робота № 2 « Модель множинної лінійної регресії»
- •Тема: Нелінійні моделі
- •1. Нелінійні регресії
- •2. Нелінійні регресії 1-го класу
- •2.1. Поліноміальна модель
- •2.2. Гіперболічна модель
- •3. Нелінійні регресії 2-го класу
- •3.1. Показникова моделі
- •3.2. Степенева модель
- •3.3. Напівлогарифмічні моделі
- •Лінійно – логарифмічна модель
- •3.4. Виробнича функція Кобба – Дугласа
- •4. Врахування випадкового відхилення
- •Лабораторна робота №1 “Методи прогнозування цінової динаміки”
- •1. Лінійна регресія
- •2. Нелінійна регресія
- •2. Порядок визначення оптимальної прогностичної моделі
- •Іншим показником якості моделі є вибірковий коефіцієнт детермінації. Для будь якої моделі показник розраховується так:
- •Лабораторна робота № 3 «Оцінювання параметрів нелінійної моделі»
- •Мета роботи:
- •Завдання:
- •Дослідження наявнoстi мультиколінеарності у масиві змінних
- •Розв’язання
- •Розв’язання
- •Приклад дослідження на наявність гетероскедастичності
- •Параметричний тест Гольфельда – Квандта
- •Тест Глейсера
- •- Критерій
- •Тест Спірмена
- •Тема*: Фіктивні змінні в регресійних моделях
- •1. Необхідність використання фіктивних змінних
- •2. Моделі ancova
- •2.1. Ancova - модель за наявності у фіктивної змінної двох альтернатив
- •2.2. Моделі ancova за наявності у якісних змінних більше двох альтернатив
- •2.3. Регресія з однією кількісною і двома якісними змінними
- •3. Використання фіктивних змінних у сезонному аналізі
1. Лінійна регресія
2. Нелінійна регресія
Лінійна регресійна модель є найбільш популярною моделлю в економіці. Проте більшість економічних процесів неможливо якісно описати за допомогою цієї моделі. Тому на практиці застосовуються складніші економетричні моделі з нелінійною залежністю між ціною та фактором
Парну квазілінійну регресію
можна записати в загальному вигляді:
.
Заміною величин
,
нелінійна парна регресія
приводиться до лінійної парної регресії:
.
У таблиці подано види
використовуваних у лабораторній роботі
моделей, а також необхідні заміни
змінних.
Мод Модель |
Заміна |
|
|
|
|
|
|
|
|
|
|
|
|
Оцінка адекватності обраної моделі спостережуваним даним здійснюється за допомогою критерію Фішера:
,
де
y – фактичне значення ціни;
- середнє
значення ціни за розрахунковий період;
- розрахункове
значення ціни;
k1 = m – кількість факторів, що включені до моделі. В даному випадку до моделі включено лише один фактор – час, тобто m = 1.
k2 = n – m - 1, n – кількість спостережень.
Якщо F-розрахункове більше за критичне значення Ftab, то робиться висновок про адекватність обраної моделі спостережуваним даним.
Надійний інтервал прогнозу ціни у разі застосування квазілінійної моделі розраховується таким чином. Спочатку знаходиться середньоквадратичне відхилення розрахункових значень від фактичних:
,
де
- розрахункове значення ціни, яке знаходиться з обраної моделі:
Граничні межі інтервалу можливих значень прогнозу розраховуються за формулою:
,
де
t(,p) – критичне значення розподілу Стьюдента для ймовірності p з =n-2 ступенями волі;
,
- номер періоду для якого
розраховується прогноз;
Останнім кроком є розрахунок
прогнозного інтервалу у такий спосіб:
,
2. Порядок визначення оптимальної прогностичної моделі
Для вибору оптимальної прогностичної моделі застосовують показник середньоквадратичного відхилення розрахункових значень від фактичних та вибірковий коефіцієнт детермінації.
Середнє квадратичне відхилення розрахункових значень від фактичних за будь якої моделі здійснюється за формулою:
Цей показник свідчить про те, наскільки вдало обрана модель наближається до фактичних значень ціни. Значення цього показника для оптимальної моделі повинно бути мінімальним.
Іншим показником якості моделі є вибірковий коефіцієнт детермінації. Для будь якої моделі показник розраховується так:
Тобто коефіцієнт детермінації розраховується як відношення дисперсії розрахункових значень до загальної дисперсії фактичних значень ціни (для лінійної парної регресії коефіцієнт детермінації дорівнює квадрату коефіцієнта кореляції). Таким чином вибірковий коефіцієнт детермінації показує який відсоток варіації залежного фактора здатна пояснити обрана модель.
