Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы ОИФ экзамен.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.76 Mб
Скачать

25. Определение числа свай в фундаменте и размещение их в плане.

В первую очередь необходимо определить допускаемую нагрузку на сваю, раз­делив полученную расчетом по формуле или Fd = c( cR*R*A+u*∑ cf*fi*hi) несущую способность сваи на коэффициент надежности ук = 1,4. Однако не всегда полученный результат принимают за допускаемую нагрузку на сваю, потому что в ряде случаев рас­чет завышает несущую способность сваи; также могут оказаться дефекты при погружении свай (недобивки до проектных отметок, разрушение материала и др.), что снизит несущую способность. Поэтому при больших значениях Fd / ук их ограничиваю.

Количество свай в кусте n определяют, исходя из условия (1), приравни­вая расчетную нагрузку на сваю от здания к принятой допускаемой нагрузке на сваю: n =

где N1 - сумма вертикальных нагрузок на обрезе ростверка в комбинации с NMax, причем нагрузки принимаются для расчета по I предельному состоянию, 0,9 dp cр - нагрузка, приходящаяся на одну сваю от ростверка, кН (0,9 - пло­щадь ростверка, приходящаяся на одну сваю, м2; dp - глубина заложения рост­верка, м; cр - усредненный удельный вес ростверка и грунта на его обрезах, принимаемый 20 кН/м3).

Полученное значение числа свай n округляется до целого в большую сторону. В фундаментах под колонны крановых промзданий принимают обычно не менее 4 свай, допускается применять фундаменты из 3 свай при от­сутствии значительных моментов (эксцентриситет не более 0,1 м) и небольших вертикальных нагрузках (до 400 кН на сваю).

Размещение свай в кусте осуществляется с учетом следующих требова­ний:

- центр тяжести свайного куста должен совпадать или находиться возможно ближе к точке приложения равнодействующей постоянных нагрузок; в практике проектирования обычно совмещают центр тяжести свайного куста с вертикальной осью колонны;

- расстояние между осями соседних забивных свай в кусте должно быть не менyе 3d (d - сторона сечения сваи).

Cве6сы ростверка за наружную грань принимаются 150 мм, размеры ростверка в плане должны быть кратными 300 мм. Для рядовых свайных ф-тов определяется шаг свай9расстояние между соседним осями свай): a = , где N1 - погонная нагрузка на рядовой фундамент, кН/м; 0,7 dp cр - погонная нагрузка от одного ростверка( 0,7 м – осредненная ширина ростверка; dp - глубина заложения ростверка). Расстояние между сваями принимают от 3 до 6 d; в случае если требуемый шаг окажется меньше 3 d, сваи располагают в 2 ряда и более. Ширину ростверка принимают в зависимости от ширины стены, свес ростверка за грань сваи должен быть не менее 100 мм.

26. Определение осадки оснований свайных фундаментов.

27. Искусственно улучшенные основания. (Общие положения).

28. Конструктивные методы улучшения работы грунтов в основании.

29. Возведение фундаментов в вытрамбованных котлованах.

30. Уплотнение грунтов водопонижением. Электроосмос.

Электроосмос применяется в водонасыщенных связных грунтах, а также для предварительного (превентивного) оттаивания мерзлых (в том числе и вечномерзлых) грунтов.

Также как и при электрохимическом закреплении в основание погружаются электроды: (+) анод в виде металлического стержня и (-) катод в виде перфорированной трубы. При пропускании постоянного тока через глинистый (мерзлый) грунт, последний теряет связную воду, которая получает перемещение (миграцию) в сторону отрицательного электрода (катода). Скопившаяся свободная вода у катода откачивается через перфорированный электрод-трубу.

Процесс закрепления по данной методике зависит от времени пропускания тока через грунт и сопровождается частичным разрушением металлического стержня-анода.

В результате проведения подобных работ в закрепляемом грунте происходят:

Уменьшение влажности.

Частичное уплотнение.

31. Электрохимическое закрепление грунтов.

Для грунтов с Кф < 0,1 м/сут (супеси, суглинки) применяют электрохимическое закрепление. Электрохимическое закрепление основано на явлении электроосмоса, которое еще в 1808 г. было открыто профессором Московского университета Ф.Ф. Рейсом. Суть данного явления заключается в том, что при пропускании постоянного тока через глинистый грунт, последний теряет связную воду, которая получает перемещение (миграцию) в сторону отрицательного электрода (катода).

При электрохимическом закреплении к перфорированным трубам-электродам подается постоянный ток со средним напряжением 70…80 В (см. схему).

Принципиальная схема электрохимического закрепления связного грунта. а - инъектор-анод для закачки хлористого натрия. б - инъектор катод для откачки свободной воды.

Свободная вода скапливается около катода, а затем через перфорированный инъектор откачивается. Одновременно через инъектор-анод подается раствор хлористого кальция (Са Сl2), который способствует закреплению основания. Периодически производится смена полярности. На представленной схеме приняты следующие обозначения: а) – инъектор-анод с закачкой Са Сl2; б) – Инъектор-катод с откачкой свободной воды.

В результате проведения подобных работ в связном грунте уменьшается влажность (грунт переходит в категорию тугопластичного, полутвердого состояния, с коэффициентом фильтрации Кф < 0,01 м/сут) и возрастает прочность (угол внутреннего трения и сцепления увеличиваются до 70%).

32. Термический метод закрепления грунтов.

Термическая обработка грунта предназначена для устранения просадочности лёссовых оснований. Узкая направленность данного способа закрепления основания связана с тем, что лёссовый грунт при температуре около 400°С практически теряет свои просадочные свойства, превращаясь в обычный суглинок. На этом принципе и основывается методика закрепления данного основания, схема выполнения которой приведена на схеме.

Принципиальная схема термического закрепления лёссового основания.

В общем случае работы по термической обработке лёссового основания выполняются в следующей последовательности:

С поверхности грунта пробуривается скважина.

В устье скважины устанавливают форсунку (2).

В форсунку подается горючие из резервуара (4) с помощью насоса (3) и сжатый воздух компрессором (1).

Зажженное пламя в устье скважины (форсунке) достигает температуры > 1000°С, которая через стенки скважины нагревает грунт. В массиве лёссового грунта образуется столб обожженного грунта диаметром около 3 м. Граница закрепленного массива лёссового грунта соответствует t ≈ 400°C.

Прочность обожженного грунта достигает до 1 мПа и зависит от времени термической обработки.

Термическое закрепление применяют в лессовых грунтах для устранения их просадочных свойств. В первых опытах по термическому закреплению, произведенных Н. А. Осташевым в 1936 г., горячие газы поступали из печи в скважину по трубе и под давлением распространялись в толще окружающего грунта, производя его обжиг.

В 1955 г. этот способ был усовершенствован в ЮЖНИИ по строительству И. М. Литвиновым с группой сотрудников. Сжигание топлива производили не в печи, а в устье самой скважины, герметически закрытой сверху, куда для обеспечения горения кислородом нагнетали воздух под давлением 0,15-0,5 am.

Для обжига здесь применяют жидкое и газообразное топливо. Режим его горения выбирают, таким, чтобы образующиеся газы не вызывали плавления грунта в стенках скважины, которое имеет место при температуре 1200-1400°. В скважинах с оплавленными стенками может произойти закупорка пор, а это вызывает резкое сокращение притока горячих газов в его толщу.

Термическое закрепление доступно в лессовых грунтах при коэффициенте воздухопроницаемости 0,2-0,4 см/сек. Глубина скважин обычно бывает не более 15 м, но при малой мощности закрепляемого грунта (до 3 м) применять обжиг нерационально. Считают, что для образования вокруг скважины цилиндрического тела из термически закрепленного грунта диаметром до 2-2,5 м требуется примерно 80-120 кг жидкого топлива на каждый 1 м ее глубины, а время обжига может колебаться в пределах 5-10 дней.

33. Опускные колодцы. Особенности погружения опускных колодцев в грунт.

Опускные колодцы используются при устройстве заглубленных подземных помещений насосных станций, водозаборов, скиповых ям доменных печей, вагоноопрокидывателей, установок непрерывной разливки стали, подземных гаражей, в качестве массивных и заглубленных фундаментов для опор мостов, набережных, механических прессов и различных испытательных стендов  Опускные колодцы классифицируются: по материалу — на железобетонные, бетонные, металлические, деревянные, каменные и кирпичные. Опускные колодцы из дерева, камня и кирпича применяются крайне редко; по форме колодца (в плане)—на круглые, прямоугольные, квадратные и с закругленными торцовыми стенками Рис.Формы сечений опускных колодцев а — круглые; б — квадратные; в — прямоугольные; г — с закругленными боковыми стенками; 1 — стена; 2 —днище; 3 — поперечная стенка Прямоугольная или квадратная форма позволяет более рационально использовать площадь внутреннего помещения под оборудование. Однако опускные колодцы круглой формы более экономичны. Круглый опускной колодец лучше работает на сжатие и меньше подвержен кренам при опускании. Первым этапом процесса сооружения колодца является устройство основания под нож. Надежное основание, рациональная и правильно выбранная схема опирания ножа колодца на грунт гарантируют сохранность колодца при снятии его с временных опор и равномерность погружения в грунт на первых метрах опускания. Чаще всего применяются пять типов оснований под нож опускного колодца (рис. VI1-2). Рис.  Схема подготовки оснований под нож и установка ножа опускного колодца а — на втопленной песчаной подушке и деревянных подкладках; б — на насыпной песчаной подушке и деревянных подкладках; в — на насыпной песчаной призме; г —в специально подготовленной траншее (котловане); д — на песча-ко-гравийной (щебеночной) призме и деревянных опорных подмостях; 1 — нож колодца; 2 —деревянные подкладки; 3 — деревянная опалубка или железобетонные плиты-оболочки; 4 — деревянные подмости Подкладки выполняются из круглых бревен, отесанных на один или два канта, из брусьев или железнодорожных шпал, распиленных на два-три отрезка. Деревянные подкладки укладывают на песчаную (песчано-гравийную) подушку с заглублением их на 0,5 диаметра подкладки. Песчаная подушка равномерно распределяет давление на грунт основания и увеличивает площадь опирания. Песчаные подушки делают втопленными в естественный грунт основания и насыпными. Высота подушки 50—70 см, ширина определяется длиной деревянных подкладок плюс 100 см (по 50 см с каждой стороны). Диаметр подкладок не менее 22—25 см, длина определяется по расчету в зависимости от веса колодца и грунта основания. Обычно длина подкладок находится в пределах 2—3,5 м. Деревянные подкладки на втопленной и на насыпной песчаных подушках применяют для сравнительно небольших колодцев и с незначительным первоначальным их весом. Для более крупных опускных колодцев сооружают опоры из песчано-гравийных призм, из деревянных опор-подмостей на щебеночном основании и осуществляют бетонирование ножа колодца враспор в подготовленной траншее (котловане). Такие опоры используются и при бетонировании опускных колодцев на слабых грунтах. Если на месте установки колодца залегают илистые грунты или торф, то их удаляют и заменяют песчаными грунтами. Песчаные и песчано-гравийные призмы для удержания опалубки отсыпают по контуру стен опускного колодца. Наружный откос призмы выравнивают вручную с уклоном, соответствующим углу наклонной грани ножа опускного колодца. На наружный откос призмы и под банкетку ножа укладывают сборные железобетонные плиты-оболочки, которые затем крепят к армокаркасам ножа. В дальнейшем они служат опалубкой. Могут быть использованы и деревянные щиты опалубки. В тех случаях, когда призмы не могут удержать откос с заложением, равным уклону грани скошенной части консоли ножа колодца, технологию изготовления ножа несколько изменяют. Вначале монтируют армокаркас ножа, затем на него навешивают и на нем закрепляют опалубку (деревянную или из железобетонных плит-оболочек), производят отсыпку песчаной призмы и тщательное уплотнение грунта с подбивкой его под наклонную грань ножа колодца. Широкое распространение получил способ бетонирования ножа колодца в траншее враспор. При этом одна из сторон траншеи делается с уклоном, соответствующим уклону наклонной грани ножа колодца. На этот откос укладывается опалубка чаще всего из железобетонных плит-оболочек, затем устанавливается армокаркас ножа, закрепляется опалубка у вертикальной грани ножа с другой стороны и нож бетонируется. Подготовка основания под нож сборного из железобетонных панелей опускного колодца имеет некоторые особенности. При монолитном ноже колодца, т. е. когда нож армируется и бетонируется непосредственно на месте погружения колодца, подготовку основания под нож производят так же, как и при монолитных опускных колодцах. В этом случае, чаще всего в грунте основания, делается пионерный котлован, одна сторона которого планируется строго по уклону наклонной ножевой части колодца, а с другой стороны котлована оставляется проход примерно 1 м шириной для установки вертикальных щитов опалубки ножа.

Рис. Схема подготовки оснований под нож опускного колодца из сборных железобетонных панелей. 1 — нож; 2 — деревянные опорные стойки; 3— шнур для Взрывчатого вещества; 4 — деревянные брусья (шпалы); 5 — рым; 6— внутреннее опорное кольцо; 7 — уплотненный щебень; 8 — металлическая пластинка; 9—опорное бетонное кольцо форшахты; 10 — фиксирующий металлический уголок; 11 — металлические упоры; 12 — металлические крепежные болты; 13 — металлический резец На рис. приведена схема опирания ножа круглого опускного колодца диаметром 60 м и высотой 20,5 м, стены которого выполнены из плоских сборных железобетонных панелей. Первоначально по наружному контуру стены колодца бетонируют опорное кольцо форшахты, затем внутреннее опорное кольцо, которое размещается с внутренней стороны колодца, в 60 см от опорного кольца форшахты. Внутреннее опорное кольцо бетонируют отдельными блоками. Между блоками устанавливают деревянные щиты, чтобы облегчить в дальнейшем возможность удаления блоков внутреннего опорного кольца. Каждый блок должен иметь строповочные петли. Пространство между опорным кольцом форшахты и внутренним опорным кольцом заполняют хорошо уплотненным щебнем или гравийной смесью. На внутреннее опорное кольцо и межкольцевое пространство укладывают деревянные брусья из железнодорожных шпал с таким расчетом, чтобы каждая панель опиралась на три шпалы. Один конец шпалы находится под банкеткой ножа колодца (панели), а во второй конец упирается стойка, поддерживающая внутренний уступ консоли и передающая давление на внутреннее опорное кольцо. Под каждую панель устанавливают одну-две деревянные стойки, воспринимающие вертикальную нагрузку от веса стены колодца. С наружной стороны ножа панели располагают на опорном кольце форшахты специальные металлические упоры – по одному – два упора на каждое кольцо. Каждый упор крепиться к панели болтами. С наружной стороны упоры ограничивают фиксирующим метал- м уголком , который приваривают к метал – ой пластине ( закладной части )форшахты. Расчетная нагрузка на каждый упор полностью воспринимается болтами , рассчитанными на срез. Таким образом , общий срез колодца передается через опорные стойки, шпалы и упоры на два опорных бетонных кольца, благодаря чему нагрузка равномерно распределяется на всю площадь опоры.

34. Устройство фундаментов с помощью кессона.

В настоящее время кессоны применяются, когда: подземное сооружение возводится в непосредственной близости от существующих зданий или сооружений и есть опасность выноса или выпора грунта из-под подошвы их фундаментов; подземное сооружение строится в сильно обводненных грунтах. В этих условиях опускной колодец требует больших затрат на водоотлив, и поэтому экономически выгоднее использовать кессон. Кроме того, кессон находит применение при проходке горизонтальных туннелей в водонасыщенных грунтах. По назначению различают кессоны: для устройства глубоких фундаментов и заглубленных зданий; для выполнения различных строительных работ под водой. По способу опускания кессоны делят на: опускаемые с поверхности земли и из котлованов; островные, погружаемые на местности, покрытой водой, с искусственных островков; наплавные, опускаемые с воды путем затопления кессонной камеры, которой предварительно сообщается плавучесть [27].

2. Элементы кессона и оборудование для его опускания 

 Кессоны для устройства глубоких фундаментов и заглубленных зданий Рис. Схемы устройства кессона а — для заглубленного здания; б — для глубокого фундамента; 1 — кессонная камера; 2 — надкессонное строение; 3 - гидроизоляция; 4 —шлюзовой аппарат Собственно кессон (рис. VII-22) состоит из кессонной камеры, надкессонного строения, гидроизоляции. Обычно кессонная камера устраивается из железобетона и лишь в редких случаях — из металла.  Форма сечения кессонной камеры — прямоугольная, квадратная или круглая. Стенки камеры наклонные и заканчиваются ножом (рис. VII-23). Высота камеры от банкетки до потолка принимается не менее 2,2 м. В потолке оставляются отверстия для установки шахтной трубы, патрубков для трубопроводов сжатого воздуха, воды, электроэнергии. Рис.Нож кессона а — тупой; б —с резцом; 1— опалубка; 2 — хомуты Надкессонное строение выполняется в зависимости от назначения кессона как колодец с железобетонными стенками (рис. VII-22, а) или в виде сплошного массива из монолитного бетона или железобетона (рис. VII-22,б). Иногда в конструкции надкессонного строения предусматривается установка по наружному контуру кессона тонких железобетонных плит-оболочек, выполняющих роль внешней опалубки. С внутренней стороны плиты-оболочки снабжается выпусками арматуры или покрываются мелким щебнем (щебеночная шуба). То и другое служит связью для бетона, укладываемого в надкессонное строение. Гидроизоляция наносится на наружные стенки кессона для защиты от проникания воды внутрь кессона. В качестве гидроизоляции применяются торкрет, покраска битумно-бензиновым раствором, штукатурка из холодных битумных мастик и из горячих асфальтовых растворов, металлические листы, свариваемые в виде ванны. Перед нанесением гидроизоляции поверхность бетона должна быть хорошо очищена от грязи, краски, масляных пятен и т. п.

35. Возведение фундаментов методом "стена в грунте".

Метод "стена в грунте" характеризуется как различными способами выполнения отдельных технологических процессов, так и общей последовательностью их осуществления.

При строительстве стен в грунте в разных условиях выполняются следующие основные технологические процессы:

-          бурение одиночных скважин насухо в устойчивых грунтах, а в неустойчивых — под глинистой суспензией или с применением обсадных труб с использованием соответственно шнековых, ударных или вращательных (лопастных и шарошечных долот) буровых станков;

-          разработка коротких траншей под глинистой суспензией способом секущихся скважин;

-          разработка горизонтальными слоями сверху вниз под глинистой суспензией коротких траншей отдельными захватками через одну грейферами или длинных траншей пионерным способом, то есть сразу на всю глубину с непрерывным наращиванием длины траншеи (обратной лопатой, драглайном, многоковшовым или штанговым экскаватором, а также бурофрезерными машинами);

-          устройство монолитных стен в грунте отдельными секциями из твердеющих материалов (бетон, железобетон) или пионерной отсыпкой нетвердеющих материалов (глиногрунтовых, при необходимости в сочетании с пленками);

-          устройство сборных железобетонных стен из плоских, ребристых, коробчатых панелей, иногда в сочетании с направляющими колоннами.

На основе этих процессов созданы следующие основные способы строительства стен в грунте:

-          "секущихся свай", при котором буронабивная стена составляется из вертикальных свай, расположенных в одном створе при частичной врезке свай второй очереди в сваи первой очереди;

-          монолитных стен в грунте путем строительства их отдельными секциями в траншеях из "секущихся скважин";

-          одноярусных "сборных стен в грунте" с рабочим стыком между стеновыми плоскими и ребристыми панелями и с нерабочими стыками;

-          сборных многоярусных стен в грунте с рабочими вертикальными и горизонтальными стыками между стеновыми панелями;

-          сборномонолитных стен в грунте из коробчатых стеновых панелей с рабочими их стыками и замоноличиванием вертикальных пустот-колодцев;

-          комбинированных стен в грунте, сочетающих в себе верхние ярусы несущих стен при нижнем противофильтрацион-ном ярусе;

-          комбинированных стен заглубленных сооружений в водоносных пластах большой или неограниченной мощности с созданием на требуемой глубине в основании искусственного водоупора.

Эффективность метода "стена в грунте" может проявляться двояко: когда метод "стена в грунте" является единственным технически возможным методом строительства и его нельзя заменить никаким другим методом, а также когда из нескольких технически возможных методов строительства заглубленного сооружения метод "стена в грунте" является наиболее эффективным по выбранному критерию сравнения. В первом случае область эффективности называют областью незаменимости метода "стена в грунте". Во втором — областью сравнительной экономической эффективности.

К области незаменимости метода "стена в грунте" относятся, в частности, следующие случаи:

-          сооружение имеет в плане большие размеры и очень слож

ную конфигурацию, что исключает возможность успешного

применения метода опускного колодца из-за большой вероят

ности его частых перекосов при опускании, а большая глубина

заложения сооружения в водонасыщенных неустойчивых грун

тах и сжатые сроки исключают возможность строительства его

в открытом котловане;

-          сооружение имеет разную ступенчато- или плавно меняющуюся глубину заложения стен по его периметру, что также исключает возможность его возведения методами опускного колодца и в открытом котловане;

-          сооружение закладывается на значительную глубину в сильно проницаемых суффозионных и подверженных выпору грунтах в условиях отсутствия в его основании водоупорных пластов для сопряжения с ними противофильтрационных шпунтовых или ледопородных диафрагм;

-          сооружение большого размера в плане и большой глубины строится в суровых климатических условиях при длительном периоде морозов, что практически исключает его возведение опускным методом из-за опасности примерзания конструкций к окружающему грунту, а возведение его в открытом котловане невозможно в требуемые сроки из-за сильных морозов;

-          строительство сооружения производится в непосредственной близости от существующих зданий и сооружений на стесненной площадке, когда опускной метод и строительство в открытом котловане исключаются из-за возникновения опасности нарушить устойчивость смежных сооружений (эти случаи наиболее часты в связи с реконструкцией и расширением промышленных предприятий и подземных объектов в городах);

-          сооружение является незамкнутым, то есть линейным или линейно-протяженным (противофильтрационная диафрагма, подпорная стенка или галерея), осуществление которого методом опускного колодца вообще невозможно, а сооружение в открытом котловане также заведомо исключается из-за явной технической нецелесообразности (большие глубины заложения) ;

-          сооружение представляет собой канализационный коллектор, который необходимо уложить в короткие сроки в неустойчивых водонасыщенных грунтах в глубокой траншее при отсутствии металлического шпунта.

Из приведенных примеров незаменимости метода "стена в грунте" видна особо важная роль, которую играет этот метод в техническом прогрессе строительства заглубленных сооружений.

Исследования показали, что метод "стена в грунте" при разных грунтовых условиях, разных размерах сооружений в плане и по глубине заложения имеет область применения более широкую, чем методы строительства в открытом котловане и опускного колодца

Наряду с выяснением области незаменимости или сравнительной эффективности метода "стена в грунте" следует установить также и область неприменимости этого метода:

-          крупнообломочные грунты с пустотами между отдельными камнями, не заполненными мелкозернистыми грунтами, в результате чего глинистая суспензия с большими скоростями проваливается в грунт и траншею создать не удается;

-          карстовые грунты с пустотами, которые также могут служить путями для утечки глинистой суспензии, в результате чего ее горизонты в траншее не удается поддержать на нужном уровне, что приводит к быстрому обрушению стенок траншеи;

-          текучие илы, особенно когда они залегают у поверхности земли;

-          насыпные грунты на территории современных и древних свалок, имеющие включения твердых, в частности металлических предметов, таких как рельсы и балки, а также пересекающие трассу траншеи, подземные сооружения и инженерные сети, перенос которых невозможен;

-          твердые включения, в частности валуны, если их размеры превышают 150—200 мм.

Преимущества метода "стена в грунте" настолько велики, что поиски путей преодоления приведенных выше ограничительных факторов ведутся очень интенсивно.

36. Анкеры в грунте. Конструкции анкеров и технология их устройства.

37. Осушение котлованов.

Открытый водоотлив

Применяется при разработке неглубоких котлованов и незначительном притоке подземных вод в водонасыщенных скальных, обломочных или галечных грунтах. При открытом водоотливе широко применяются центробежные насосы. Открытый водоотлив организуют следующим способом. По периметру котлована устраивают дренажные канавки с уклоном 0,001…0,002 в сторону приямков, из которых по мере поступления вода откачивается с помощью насосов. По мере разработки котлована приямки постепенно заглубляются вместе с канавками. Для исключения нарушения природной структуры грунтов основания вода не должна покрывать дно котлована.

В мелкозернистых грунтах открытый водоотлив приводит к оплыванию откосов котлованов и траншей, к разрыхлению грунта в основаниях зданий и сооружений. Здесь целесообразно применить глубинное водопонижение уровня грунтовой воды.

1.2 Легкие иглофильтровые установки (ЛИУ)

Используют для глубинного водопонижения грунтовых вод на глубину 4-5м в песчаных грунтах. При этом способе водопонижения иглофильтры располагают по периметру котлована обычно с шагом 0,8…1,5м. Откачку воды из иглофильтров производят с помощью вихревого насоса через всасывающий коллектор. При этом вокруг каждого иглофильтра образуются депрессионные воронки, которые, соединяясь, и приводят к понижению уровня грунтовых вод в будущем котловане или траншее.

Для понижения УГВ свыше 5м применяют многоярусные легкие иглофильтровые установки, которые требуют, как правило, расширения котлована и увеличения земляных работ.

.3 Понижение УГВ эжекторными иглофильтрами

Для водопонижения в грунтах с большим коэффициентом фильтрации и при близком залегании водоупора от разрабатываемой выемки используют эжекторные установки ЭИ-2,5; ЭИ-4 и ЭИ-6, состоящие из иглофильтров с эжекторными водоподъемниками, распределительного коллектора и центробежных насосов. Эжекторные установки позволяют понижать уровень грунтовых вод до 25м.

1.4 Понижение УГВ с электроосмосом

В пылевато-глинистых грунтах, имеющих коэффициент фильтрации менее 2м/сут, искусственное водопонижение осуществляют с помощью электроосмоса в сочетании с иглофильтром. Его выполняют в такой последовательности. По периметру котлована с интервалом 1,5…2м располагают иглофильтры, а между ними (в шахматном порядке относительно иглофильтров) по бровке котлована забивают металлические стержни из арматуры или труб небольшого диаметра. Эти стержни подсоединяют к положительному полюсу источника постоянного тока напряжением 40…60 В, а иглофильтры - отрицательному. Под действием тока рыхлосвязанная поровая вода переходит в свободную и, перемещаясь от анода к катоду (иглофильтру), откачивается, в результате уровень грунтовых вод понижается. При этом способе водопонижения расход электроэнергии составляет 5…40 кВт/ч на1 м3

38. Защита котлована от подтопления.

Для защиты котлованов от подтопления используют следующие группы методов:

- водопонижение;

- противофильтрационные завесы;

- комбинация первых двух методов.

Выбор той или иной группы методов зависит от:

- вида подземных вод;

- УПВ (УГВ);

- свойств грунтов;

- особенностей их напластования;

- глубины, размеров и формы котлована в плане;

- других факторов.

Во всех случаях, какой бы способ мы не выбрали, необходимо исключить нарушение природной структуры грунта в основании, обеспечить устойчивость откосов котлована и сохранность близко расположенных зданий.

’ Водопонижение осуществляется с помощью:

глубинного водопонижения;

- открытого водоотлива

1. Открытый водоотлив – наиболее простой способ. Воду откачивают насосами непосредственно из котлована. А точнее из устраиваемой на дне котлована сети канавок глубиной 0,3…0,6 м, по которым вода отводится в приямок (зумпф), откуда она и откачивается систематически насосами.

- Открытый водоотлив применяют только в малоразмываемых грунтах и породах (трещиноватые скальные породы, галька, гравий, крупные пески), а также там, где мало прямого поступления воды.

2. Глубинное водопонижение исключает просачивание подземных вод через откосы и дно котлована. Он заключается в искусственном понижении УГВ в районе котлована.

39. Основные свойства структурно неустойчивых грунтов.

Структурно-неустойчивые грунты - слабые сильносжимаемые глинистые, лёссовые просадочные, набухающие и вечномерзлые грунты. Использование этих грунтов в качестве оснований зданий и сооружений рассматривается с учетом условий возможного нарушения их природной структуры и развития просадки. На этой основе разрабатываются соответствующие мероприятия по обеспечению устойчивости зданий и сооружении.

К слабым грунтам можно отнести и заторфованные, которые наряду со специфическими особенностями имеют показатели прочностных и деформационных свойств, близкие к показателям слабых глинистых грунтов. Слабые водонасыщенные глинистые грунты обладают следующими физико-механическими свойствами, обусловливающими выделение Их в отдельную группу.

Слабые водонасыщенные глинистые грунты обладают большой и неравномерной сжимаемостью. Здания и сооружения на таких грунтах претерпевают большие осадки, в отдельных случаях до 1,5 . 2 м, что приводит здания к непригодности для эксплуатации.

Процесс уплотнения слабых водонасыщенных глинистых грунтов происходит в течение длительного времени. Поэтому осадки зданий развиваются очень медленно, особенно в тех случаях, когда основания сложены большими толщами водонасыщенных глинистых грунтов. Происходит это ввиду низкой водопроницаемости этих грунтов и медленного отжатая поровой воды в процессе уплотнения под воздействием внешней нагрузки. Наблюдения за осадками показывают, что в зданиях наблюдаются изгибы кирпичной кладки, прогибы металлических и железобетонных конструкций и т. д.

Слабые водонасыщенные глинистые грунты имеют низкую прочность. Определенные по методике быстрого сдвига угол внутреннего трения и удельное сцепление соответственно составляют 10° и 0,006 - 0,025 МПа. Поэтому на таких грунтах чрезвычайно сложно обеспечить устойчивость зданий и сооружений, особенно с эксцентричным приложением внешней нагрузки (дымовые трубы, опоры линии передач и др.).

40. Механические свойства мерзлых грунтов.

Механические характеристики мёрзлых грунтов изучаются для назначения расчётных характеристик прочности и деформируемости, получения зависимостей, описывающих поведение грунтов под нагрузками , при изменении температуры, воздействии криогенных процессов и др.

Мёрзлые грунты по агрегатному состоянию относят к твёрдым телам, однако, наличие в них незамёрзшей воды и льда обуславливает проявление реологических свойств. Поэтому в механике мёрзлых грунтов используются представления , развивающиеся на основе теории упругости, пластичности и вязкости сплошных сред, исходя из которых создаётся подход к выбору характеристик прочностных и деформационных свойств и методов их определения.

К основным характеристикам прочностных свойств мёрзлых грунтов относятся: сопротивление сдвигу грунта по грунту и по поверхностям смерзания; сопротивление сжатию, растяжению; сцепление и угол внутреннего трения, эквивалентное сцепление.

Различают простое и сложное напряжённые состояния в мёрзлом грунте.

Простое напряжённое состояние соответствует проявлению одного из видов напряжений: сжатия, растяжения, сдвига. Напряжённое состояние в массиве грунта, соответствует сложному напряжённому состоянию, когда проявляются одновременно при различном сочетании все виды простых напряжённых состояний.

Определение прочностных и деформационных характеристик выполняются как в лабораторных, так и в полевых условиях, при простом и сложном напряжённом состояниях. Основными видами испытаний являются:

Одноосное сжатие; разрыв; сдвиг; кручение; компрессия; осесимметричное трёхосное сжатие вертикальной и радиальной нагрузкой; осесимметричное трёхосное сжатие с кручением; осесимметричное сжатие полого цилиндра с кручением; трёхосное сжатие с независимым заданием всех трёх главных направлений; динамометрическое испытание в релаксационно-ползучем режиме.

Испытания, с помощью которых оцениваются деформационные свойства: вдавливание сферического штампа;. сдвиг на срезном приборе; сдвиг на клиновидном приборе; сдвиг по поверхности смерзания; сдвиг мёрзлого грунта по поверхности модели сваи; раздавливание образца.

41. Основные принципы проектирования на вечномерзлых грунтах.

СНиП 2.02.04-88

3.1. При строительстве на вечномерзлых грунтах в зависимости от конструктивных и технологических особенностей зданий и сооружений, инженерно-геокриологических условий и возможности целенаправленного изменения свойств грунтов основания применяется один из следующих принципов использования вечномерзлых грунтов в качестве основания сооружений:

принцип I - вечномерзлые грунты основания используются в мерзлом состоянии, сохраняемом в процессе строительства и в течение всего периода эксплуатации сооружения;

принцип II - вечномерзлые грунты основания используются в оттаянном или оттаивающем состоянии (с их предварительным оттаиванием на расчетную глубину до начала возведения сооружения или с допущением их оттаивания в период эксплуатации сооружения).

3.2. Принцип I следует применять, если грунты основания можно сохранить в мерзлом состоянии при экономически целесообразных затратах на мероприятия, обеспечивающие сохранение такого состояния. На участках с твердомерзлыми грунтами, а также при повышенной сейсмичности района следует принимать, как правило, использование вечномерзлых грунтов по принципу I.

При строительстве на пластичномерзлых грунтах следует, как правило, предусматривать мероприятия по понижению температуры (пп. 3.10-3.13) до установленных расчетом значений, а также учитывать в расчетах оснований пластические деформации этих грунтов под нагрузкой согласно указаниям пп. 4.20-4.22.

3.3. Принцип II следует применять при наличии в основании скальных или других малосжимаемых грунтов, деформация которых при оттаивании не превышают предельно допустимых значений для проектируемого сооружения, при несплошном распространении вечномерзлых грунтов, а также в тех случаях, когда по техническим и конструктивным особенностям сооружения и инженерно-гео­криологическим условиям участка при сохранении мерзлого состояния грунтов основания не обеспечивается требуемый уровень надежности строительства.

3.4. Выбор принципа использования вечномерзлых грунтов в качестве основания сооружений, а также способов и средств, необходимых для обеспечения принятого в проекте температурного режима грунтов, следует производить на основании сравнительных технико-экономических расчетов.

3.5. В пределах застраиваемой территории (промышленный узел, поселок, городской микрорайон и т. д.) надлежит предусматривать, как правило, один принцип использования вечномерзлых грунтов в качестве оснований. Это требование следует учитывать также при проектировании новых и реконструкции существующих зданий и сооружений на застроенной территории, размещении мобильных (временных) зданий и прокладке инженерно-технических сетей.

Применение разных принципов использования вечномерзлых грунтов в пределах застраиваемой территории допускается на обособленных по рельефу и другим природным условиям участках, а в необходимых случаях - на природно-необособленных участках, если предусмотрены и подтверждены расчетом специальные меры по обеспечению расчетного теплового режима грунтов в основании соседних зданий, возведенных (или возводимых) по принципу I (резервирование зон безопасности, устройство мерзлотных и противофильтрационных завес и т. п.).

3.6. Линейные сооружения допускается проектировать с применением на отдельных участках трассы разных принципов использования вечномерзлых грунтов в качестве основания. При этом следует предусматривать меры по приспособлению их конструкций к неравномерным деформациям основания в местах перехода от одного участка к другому, а при прокладке их в пределах застраиваемой территории следует соблюдать требования, предусмотренные п. 3.5.

42. Конструкции и методы устройства фундаментов, возводимых по принципу I на вечной мерзлоте.

принцип I - вечномерзлые грунты основания используются в мерзлом состоянии, сохраняемом в процессе строительства и в течение всего периода эксплуатации сооружения;

Принцип I следует применять, если грунты основания можно сохранить в мерзлом состоянии при экономически целесообразных затратах на мероприятия, обеспечивающие сохранение такого состояния. На участках с твердомерзлыми грунтами, а также при повышенной сейсмичности района следует принимать, как правило, использование вечномерзлых грунтов по принципу I.

При строительстве на пластичномерзлых грунтах следует, как правило, предусматривать мероприятия по понижению температуры (пп. 3.10-3.13) до установленных расчетом значений, а также учитывать в расчетах оснований пластические деформации этих грунтов под нагрузкой согласно указаниям пп. 4.20-4.22.

Настоящие Методические рекомендация предназначены для использования при проектировании опор малых и средних мостов с применением различных способов охлаждения грунтов оснований в районах распространения вечномерзлых грунтов, используемых по принципу I.

1.2. Предусматриваемые Методическими рекомендациями способы и мероприятия по охлаждению оснований мостов должны применяться, как правило, для сохранения естественного (начального) вечномерзлого состояния грунтов этих оснований (табл. 1, п.п. 6.1 - 6.4).

1.3. В случаях, когда начальная температура вечномерзлых грунтов tuo (на период изысканий) не обеспечивает требуемые условия их использования в качестве оснований мостов по принципу I, допускается применять способы и мероприятия для понижения начальной температуры tuo при обязательном обосновании этих мероприятий специальными теплотехническими, технико-экономическими расчетами, организацией температурных наблюдений (п. 2.8).

1.4. Рекомендуемые способы охлаждения грунтов для районов Западной Сибири, учитывая их специфику, должны обосновываться теплотехническими расчетами по специальным рекомендациям.

1.5. Применение мероприятий по охлаждению вечномерзлых грунтов, используемых в основаниях мостов по принципу I, обязательно в следующих случаях:

а) начальная температура вечномерзлых грунтов tuo на глубине 10 м на период изысканий превышает минус 1 °С для несвязных и минус 1,5°С - для связных грунтов;

б) среднегодовая температура воздуха превышает минус 5 °С;

) в основании проектируемой опоры находится местный талик, обусловленный действием подруслового потока или интенсивными снеговыми отложениями в пониженной части площадки перехода;

г) высота подходной насыпи более 7 м;

д) при наличии в верхней десятиметровой толще сильнольдистых отложений (n > 0,2) или подземных льдов;

е) район характеризуется повышенной снегозаносимостью (при максимальной высоте снега более 60 см и объеме светопереноса более 200 м3/м).

При проектировании мостов по принципу I рекомендуется: применять, как правило, однопролетные мосты с минимально возможными отверстиями по условию пропуска потока с наибольшими скоростями без допущения аккумуляции при паводках;

увеличивать центральный пролет с размещением его опор на бортах лога (долины) в случае неперемерзающего зимой подруслового потока, связанного с наличием на пойменной части водотоков хорошо фильтрующих поверхностных отложений;

располагать промежуточные опоры вне русла меженных вод при необходимости применения многопролетных мостов;

устраивать русло плавным, обеспечивающим сосредоточенный пропуск меженных вод по линии наиболее низкого места лога (тальвега) с допущением в случае необходимости его врезки или подсыпки при толщине ее из дренирующих грунтов (песчано-гравийная смесь или гравийно-галечниковый грунт) не более 1 м;

не допускать на мостовых переходах образования застоев воды, размыва и связанных с этими факторами провальных деформаций поверхности русловой части;

в минимальной степени нарушать естественные поверхностные слои, особенно при неглубоком залегании сильнольдистых отложений или подземных льдов;

назначать проектные отметки планировочных поверхностей элементов перехода повышенными, с учетом тепловой просадки льдистых верхних слоев, оттаивающих в процессе формирования нового слоя сезонного протаивания; при этом особое внимание следует уделять укреплению поверхностей этих элементов;

применять мероприятия по обеспечению безналедного пропуска вод под мостами;

предусматривать специальные схемы подходных насыпей и сопряжения их с устоями, в которых отепляющее действие природных факторов (снежный покров, солнечная радиация) проявляется в наименьшей степени (п. 6.1);

применять, как правило, безростверковые опоры из свай-столбов или свай-оболочек с обеспечением доступа атмосферного воздуха в зазор под насадкой.

2.5. В качестве основных способов охлаждения грунтов оснований мостов рекомендуется применять:

покр ытие конусов подходной насыпи наброской из камня [1]; Рис. 1. Схемы обсыпки устоя камней:

а - при открытом воздушном зазоре под насадкой; б - при закрытом воздушном зазоре под насадкой; 1 - устой; 2 - мощение русла; 3 - уровень сезонного протаивания; 4 - каменная обсыпка

термоопоры ЦНИИС [2, 3];

Рис. 2. Схемы термоопор для возведения мостов на вечномерзлых грунтах:

а - одностолбчатый устой; б - двустолбчатый устой; в - одностолбчатая промежуточная опора; г - двустолбчатая промежуточная опора

Рис. 3. Конструкции термоопор ННИИС:

а - полая конструкция: б - с теплоаккумуляционным ядром (авторское свидетельство № 630337); в - с диафрагмой; г - с коаксиальным разделителем потоков; д - комбинированная конструкция, совмещенная с жидкостной охлаждающей установкой (ОУ (системы Гапеева, Макарова, Миронова, Моисеева); е - с уширением в основании