
- •Предмет физиологии растений и основные направления исследований
- •Методы физиологии растений
- •Задачи физиологии растений
- •Краткая история физиологии растений
- •1. Природа и функции основных химических компонентов растительной клетки
- •Элементарный состав растений
- •Углеводы
- •Растительные пигменты
- •Фитогормоны
- •Фитонциды
- •Фитоалексины
- •2. Особенности структурной организации растительной клетки
- •Клеточная оболочка
- •Вакуоль
- •Пластиды
- •3. Органы, ткани и функциональные системы высших растений
- •1. Регуляция активности ферментов
- •2. Генетическая система регуляции
- •3. Мембранная регуляция
- •4. Трофическая регуляция
- •5. Электрофизиологическая регуляция
- •6. Гормональная система регуляции
- •Ауксины
- •Цитокинины
- •Гиббереллины
- •Абсцизины
- •Брассиностероиды
- •1. Термодинамические основы водного обмена растений
- •2. Водный баланс растений.
- •Поглощение и передвижение воды.
- •Транспирация.
- •Физиология устьичных движений
- •Пути снижения интенсивности транспирации
- •1. История фотосинтеза
- •2. Лист как орган фотосинтеза
- •3. Хлоропласты и фотосинтетические пигменты
- •Пигменты хлоропластов
- •Хлорофиллы
- •Каротиноиды
- •4. Световая фаза фотосинтеза
- •Организация и функционирование пигментных систем
- •5. Темновая фаза фотосинтеза
- •Фотодыхание
- •1. Сапротрофы
- •2. Паразиты
- •3. Насекомоядные растения
- •Гликолитическое расщепление глюкозы
- •Гликолиз
- •Цикл Кребса
- •Электрон-транспортная цепь
- •Окислительное фосфорилирование
- •Энергетический выход гликолитического дыхания
- •2. Пентозофосфатное расщепление глюкозы
- •4 Рибулозофосфат 2 рибулозофосфат
- •3. Промежуточные продукты дыхания
- •4. Жиры и белки как дыхательный субстрат
- •1. Элементы‚ необходимые для растительного организма
- •2. Признаки голодания растений
- •3. Антагонизм ионов
- •4. Поглощение минеральных веществ
- •5. Ионный транспорт в растении
- •Радиальное перемещение ионов в корне
- •Восходящий транспорт ионов в растении
- •Поглощение ионов клетками листа
- •Отток ионов из листьев
- •6. Азотное питание растений
- •Ассимиляция нитратного азота
- •Ассимиляция аммиака
- •Накопление нитратов в растениях
- •1. Клеточные основы роста и развития
- •2. Закон большого периода роста
- •3. Гормональная регуляция роста и развития растений
- •Влияние фитогормонов на рост и морфогенез растений
- •Использование фитогормонов и физиологически активных веществ
- •4. Физиология покоя семян
- •5. Процессы, протекающие при прорастании семян
- •6. Покой растений
- •7. Физиология старения растений
- •8.Осенняя окраска листьев и листопад
- •9. Влияние абиотических факторов на рост и развитие растений Температура
- •10. Влияние микроорганизмов на рост растений
- •11. Движения растений
- •Фототропизмы
- •Геотропизмы
- •Другие виды тропизмов
- •1. Холодостойкость растений
- •2. Морозоустойчивость растений
- •3. Зимостойкость растений
- •4. Влияние на растения избытка влаги в почве
- •5. Засухоустойчивость растений
- •Влияние на растения недостатка влаги
- •Физиологические особенности засухоустойчивости
- •6. Жароустойчивость растений
- •7. Солеустойчивость растений
- •1. Основные термины и понятия
- •2. Методы переноса генетической информации Трансформация растений Тi-плазмидой
- •Векторные системы на основе Тi-плазмид
- •Физические методы переноса генов в растительные клетки
- •Бомбардировка микрочастицами
- •3. Получение трансгенных растений
- •Выведение растений, устойчивых к насекомым-вредителям, вирусам и гербицидам
- •Получение растений, противостоящих неблагоприятным воздействиям и старению
- •Изменение окраски цветков
- •Изменение пищевой ценности растений
- •Растения как биореакторы
1. Сапротрофы
В настоящее время грибы относят к самостоятельному царству, однако многие стороны физиологии грибов близки к физиологии растений. По-видимому, сходные механизмы лежат и в основе их гетеротрофного питания.
В плазмалемме гиф грибов, клеток дрожжей функционирует Н+-помпа, и в окружающую среду гриб выделяет различного рода кислые гидролазы. Это приводит к гидролизу сложных органических соединений в окружающем субстрате (внеклеточное кислое пищеварение) и всасыванию продуктов их распада. Механизм всасывания также связан с работой Н+-помпы в плазмалемме. При закислении наружной примембранной зоны снижается диссоциация органических кислот и они проникают в клетки в виде нейтральных молекул. Сахара и аминокислоты поступают в цитоплазму гифы в симпорте с ионами Н+ с помощью специальных липопротеиновых переносчиков. Источником энергии для переноса органических веществ в симпорте с ионами Н+ служит протондвижущая сила.
Среди растений сапрофитный способ питания обычен у водорослей. Например, диатомовые водоросли, живущие на больших глубинах, куда не достигает свет, питаются, поглощая органические вещества из окружающей среды. При большом количестве растворимых органических веществ в водоемах легко переходят к гетеротрофному способу питания хлорококковые, эвгленовые и некоторые другие водоросли. Причем и в этом случае перенос сахаров в клетки осуществляется в симпорте с ионами Н+, т. е. с использованием протондвижушей силы плазмалеммы.
У покрытосеменных растений сапрофитный способ питания относительно редок. Такие растения не имеют или имеют мало хлорофилла и не способны к фотосинтезу, хотя встречаются и фотосинтезирующие виды. Для построения своего тела они используют гниющие остатки растений и животных. Как пример можно привести Gidiophytum formicarum — полукустарник, стебель которого образует крупный клубень, пронизанный многочисленными ходами, в которых поселяются муравьи. Этот вид использует в пищу продукты жизнедеятельности муравьев, что было доказано с помощью радиоактивной метки. Меченые личинки мухи, которых муравьи занесли в полость стебля, были переварены растением через месяц, а радиоактивность была обнаружена в листьях и подземных частях растения.
Некоторые виды, не содержащие хлорофилла, для обеспечения себя органической пищей используют симбиоз с грибами; это микотрофные растения. Особенно много таких видов в семействе орхидных. На ранних этапах развития все орхидеи вступают в симбиоз с грибами, так как запаса питательных веществ в их семенах недостаточно для роста зародыша. Гифы грибов, проникающие в семена, поставляют растущему зародышу органические вещества, а также минеральные соли из перегноя. У взрослых орхидей с микотрофным типом питания гифы грибов внедряются в периферическую зону корней, но дальше проникнуть не могут. Их дальнейшему росту препятствует фунгистатическое действие клеток глубинных тканей корня, а также слой довольно больших клеток с крупными ядрами, похожих на фагоциты. Эти клетки способны переваривать гифы грибов и усваивать освобождающиеся органические вещества. Возможен, вероятно, и прямой обмен между растением и грибом через наружную мембрану гифы.
По традиции такие бесхлорофилльные растения, как подъельник (Monotropa), также относят к сапрофитам. Однако и в этом случае сапрофитный способ питания осуществляется не непосредственно, а в симбиозе с грибами в форме микоризы. Причем во многих случаях эти симбиотические отношения можно рассматривать как форму паразитизма, когда клетки растений переваривают гифы гриба, проникшие в клетки корня. Таким образом, собственно сапротрофом является гриб, а высшее растение паразитирует на нем. Гифы гриба могут соединять корень подъельника с корнями дерева, и тогда подъельник становится паразитом, получающим органические вещества от другого растения.
Микориза большинством растений используется главным образом для увеличения поглощения воды и минеральных солей.