
- •Предмет физиологии растений и основные направления исследований
- •Методы физиологии растений
- •Задачи физиологии растений
- •Краткая история физиологии растений
- •1. Природа и функции основных химических компонентов растительной клетки
- •Элементарный состав растений
- •Углеводы
- •Растительные пигменты
- •Фитогормоны
- •Фитонциды
- •Фитоалексины
- •2. Особенности структурной организации растительной клетки
- •Клеточная оболочка
- •Вакуоль
- •Пластиды
- •3. Органы, ткани и функциональные системы высших растений
- •1. Регуляция активности ферментов
- •2. Генетическая система регуляции
- •3. Мембранная регуляция
- •4. Трофическая регуляция
- •5. Электрофизиологическая регуляция
- •6. Гормональная система регуляции
- •Ауксины
- •Цитокинины
- •Гиббереллины
- •Абсцизины
- •Брассиностероиды
- •1. Термодинамические основы водного обмена растений
- •2. Водный баланс растений.
- •Поглощение и передвижение воды.
- •Транспирация.
- •Физиология устьичных движений
- •Пути снижения интенсивности транспирации
- •1. История фотосинтеза
- •2. Лист как орган фотосинтеза
- •3. Хлоропласты и фотосинтетические пигменты
- •Пигменты хлоропластов
- •Хлорофиллы
- •Каротиноиды
- •4. Световая фаза фотосинтеза
- •Организация и функционирование пигментных систем
- •5. Темновая фаза фотосинтеза
- •Фотодыхание
- •1. Сапротрофы
- •2. Паразиты
- •3. Насекомоядные растения
- •Гликолитическое расщепление глюкозы
- •Гликолиз
- •Цикл Кребса
- •Электрон-транспортная цепь
- •Окислительное фосфорилирование
- •Энергетический выход гликолитического дыхания
- •2. Пентозофосфатное расщепление глюкозы
- •4 Рибулозофосфат 2 рибулозофосфат
- •3. Промежуточные продукты дыхания
- •4. Жиры и белки как дыхательный субстрат
- •1. Элементы‚ необходимые для растительного организма
- •2. Признаки голодания растений
- •3. Антагонизм ионов
- •4. Поглощение минеральных веществ
- •5. Ионный транспорт в растении
- •Радиальное перемещение ионов в корне
- •Восходящий транспорт ионов в растении
- •Поглощение ионов клетками листа
- •Отток ионов из листьев
- •6. Азотное питание растений
- •Ассимиляция нитратного азота
- •Ассимиляция аммиака
- •Накопление нитратов в растениях
- •1. Клеточные основы роста и развития
- •2. Закон большого периода роста
- •3. Гормональная регуляция роста и развития растений
- •Влияние фитогормонов на рост и морфогенез растений
- •Использование фитогормонов и физиологически активных веществ
- •4. Физиология покоя семян
- •5. Процессы, протекающие при прорастании семян
- •6. Покой растений
- •7. Физиология старения растений
- •8.Осенняя окраска листьев и листопад
- •9. Влияние абиотических факторов на рост и развитие растений Температура
- •10. Влияние микроорганизмов на рост растений
- •11. Движения растений
- •Фототропизмы
- •Геотропизмы
- •Другие виды тропизмов
- •1. Холодостойкость растений
- •2. Морозоустойчивость растений
- •3. Зимостойкость растений
- •4. Влияние на растения избытка влаги в почве
- •5. Засухоустойчивость растений
- •Влияние на растения недостатка влаги
- •Физиологические особенности засухоустойчивости
- •6. Жароустойчивость растений
- •7. Солеустойчивость растений
- •1. Основные термины и понятия
- •2. Методы переноса генетической информации Трансформация растений Тi-плазмидой
- •Векторные системы на основе Тi-плазмид
- •Физические методы переноса генов в растительные клетки
- •Бомбардировка микрочастицами
- •3. Получение трансгенных растений
- •Выведение растений, устойчивых к насекомым-вредителям, вирусам и гербицидам
- •Получение растений, противостоящих неблагоприятным воздействиям и старению
- •Изменение окраски цветков
- •Изменение пищевой ценности растений
- •Растения как биореакторы
4. Трофическая регуляция
Взаимодействие с помощью питательных веществ — наиболее простой способ связи между клетками, тканями и органами. У растений корни и другие гетеротрофные органы зависят от поступления ассимилятов‚ образующихся в листьях в процессе фотосинтеза. В свою очередь надземные части нуждаются в минеральных веществах и воле, поглощаемых корнями из почвы. Корни используют ассимиляты, поступающие из побега, на собственные нужды, а часть трансформированных органических веществ движется в обратном направлении. Изолированные корни в стерильных условиях для нормального развития помимо минеральных веществ и сахара нуждаются еще и в некоторых витаминах, таких, как В1‚ В6 и никотиновая кислота. Очевидно, витамины поступают в корни из побегов.
Сдвиги в содержании различных элементов питания оказывают влияние на обмен веществ, физиологические и морфогенетические процессы у растений. Хорошо известны характерные изменения в растительном организме, обусловленные недостатком или избытком тех или иных минеральных веществ. При голодании усиливается конкуренция различных участков за продукты питания, что сказывается на процессах морфогенеза. При неблагоприятных условиях питания низшие организмы переходят к генеративным процессам. Цветение длиннодневных растений на длинном дне ускоряется при увеличении содержания углеводов и относительно низком содержании азотистых соединений, а зацветанию короткодневных видов на коротком дне, наоборот, благоприятствует понижение содержания углеводов и увеличение азотистых соединений.
Однако нужно отметить, что трофическая регуляция носит скорее количественный, чем качественный, характер. При ограниченном питании у растений, как правило, развитие продолжается в соответствии с внутренними закономерностями, но у них формируются органы уменьшенного размера и сокращается количество листьев, плодов и семян. Интересно, что при этом конечная величина сформировавшихся семян, даже если это одно семя, мало отличается от нормы. Все это указывает, что наряду с трофическими взаимодействиями в растительном мире функционируют более совершенные системы регуляции, обеспечивающие взаимодействие всех его частей.
5. Электрофизиологическая регуляция
Растительные организмы в отличие от животных не имеют нервной системы. Тем не менее, электрофизиологические взаимодействия клеток‚ тканей и органов играют существенную роль в координации функциональной активности и в процессах морфогенеза. Между различными частями растительного организма существуют медленно изменяющиеся разности потенциалов (электротонические поля и токи).
Наблюдаются также местные и распространяющиеся потенциалы действия. Эти виды электрической активности и составляют электрофизиологическую систему регуляции. Электрофизиологическая регуляция‚ как и другие виды регуляции‚ лежит в основе такого свойства растений как раздражимость.
Плазмалемма обладает некоторым зарядом. При этом протоплазма электрически отрицательна по отношению к поверхности клетки. Этот электрический потенциал покоя (от -50 до -200 мВ) обусловлен неодинаковым распределением ионов между внутренней и внешней средой. Внутри клетки преобладают ионы К+ и Cl-‚ снаружи больше Са2+. Поддерживается этот градиент ионными насосами. Сдвиги в ионных потоках в клетках тех или иных тканей и органов, вызванные внешними или внутренними факторами (свет‚ температура‚ сила тяжести‚ влажность‚ механические воздействия‚ изменение рН) приводят к изменению величины мембранного потенциала (МП) в этих клетках и к возникновению или изменению разности потенциалов между этим участком и другими частями растительного организма. Растущая верхушка харовых водорослей, развивающаяся верхушечная почка высшего растения по отношению к более базальным участкам обычно заряжены положительно; центр стебля электроположителен по сравнению с наружной поверхностью, верхушка колеоптиля отрицательна относительно его основания. У корней проростков кончик (1,5 мм) и корневые волоски заряжены положительно. Надземная часть в большинстве случаев электропозитивна относительно корня. Между этими участками возникает ток порядка 0,1 – 0,4 мкА.
Всякое проявление жизнедеятельности клеток и тканей, как правило, сопровождается изменением электропотенциалов. Освещение ранее затемненных листьев вызывает характерную электрофизиологическую реакцию, Обработка тканей ауксином индуцирует временную электропозитивацию обработанного участка. Электропозитивация у растений обычно связана с активацией Н+-помпы и характерна для участков тканей с высокой метаболической активностью.
Имеются данные, показывающие, что стационарные электротонические поля и токи могут участвовать в регуляции коррелятивных взаимосвязей в растительном организме. Про пускание тока силой 2—6 мкА через отрезок колеоптиля кукурузы (положительный электрод у апикального конца) ускоряет его удлинение.
Пропускание тока (5—20 мкА) в течение 2 минут поперек 5-миллиметрового апикального участка колеоптиля вызывает его изгиб. Приложение разности потенциалов величиной 25 мВ детерминирует место образования ризоида (со стороны положительного электрода) у яйцеклетки морской водоросли фукус и определяет ориентацию оси симметрии будущего тела растения.
Предполагается, что под действием электротонических полей в клеточных мембранах происходит латеральное перемещение заряженных липопротеиновых комплексов, выполняющих различные специализированные функции. Таким образом‚ следствием всякого изменения микроструктуры электрических полей в тканях может быть перераспределение подвижных белковых компонентов в мембранах, в результате чего фиксируется новое физиологическое состояние клеток,
У возбудимых клеток местное снижение МП до критического уровня приводит к дальнейшему быстрому падению его величины (фаза деполяризации), после чего МП возвращается к величине, близкой к исходному значению. Так возникает ПД (потенциал действия), или спайк, который способен распространяться. Это явление в 30-х годах впервые описал В. Остергаут, использовавший гигантские клетки харовых водорослей. Затем ПД были изучены у таких «подвижных» растений, как мимоза, венерина мухоловка, росянка. За последние время установлено, что все растения при определенных условиях способны генерировать ПД.
Распространяющиеся ПД растений и животных имеют много общего, однако у растений они развиваются медленнее. Скорость перемещения ПД у венериной мухоловки 25 см/с, у мимозы 4 см/с, у большинства растений 0‚08 - 0‚05 см/с. ПД распространяется по плазмалемме и плазмодесмам паренхимных клеток флоэмы и протоксилемы проводящих пучков. Вверх по растению ПД распространяются в 2‚5 раза быстрее, чем вниз.
Конкретный ионный механизм спайки в растительных клетках еще до конца не расшифрован. Раздражение приводит к выходу из клетки ионов Cl- и поступлению в нее ионов Са2+‚ а также к появлению потенциала действия. По окончании притока ионов Са2+ потенциал действия становится максимальным. После этого ионы К+ выходят‚ потенциал действия пропадает и восстанавливается потенциал покоя. Н+‚ К+-насос восстанавливает затем нарушенное ионное равновесие. Ионные и электрические сдвиги, лежащие в основе ПД, служат тем универсальным механизмом, с помощью которого ПД влияет на физиологические процессы в клетках.
Сигнальная роль ПД очевидна у растений, способных к быстрым двигательным реакциям. Но ПД может выполнять информационные функции и у других растений. Так, прорастание пыльцы на рыльце кукурузы сопровождается генерацией импульсов, распространяющихся по нитевидному пестику вплоть до завязи. Резкое изменение условий существования в зоне корней индуцирует единичный импульс, который, достигая листьев, вызывает в них усиление газообмена, а также ускорение транспорта ассимилятов по проводящей системе. При раздражении верхушки побега изменением температуры или интенсивности света возникающий одиночный импульс ускоряет поглощение корнями минеральных элементов. Все эти экспериментальные данные указывают на существование у растений быстрой электрической связи‚ однако объем информации‚ передаваемый таким путем‚ очень мал.