Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабораторні роботи ОММ 3 УП 2013+.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
3.36 Mб
Скачать

Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №8.

Тема заняття: Побудова вихідних опорних планів транспортної задачі.

Мета: сформувати вміння та навички побудови вихідних опорних планів транспортної задачі методами північно-західного кута, найменшої вартості та подвійного перевантаження.

Методичні рекомендації: Вивчити лекцію №4 та ознайомиться з наступною літературою [1 с. 159-189], [2 с.134-158], [3 с.129-168], [4 с.134-175]

Побудова початкового опорного плану транспортної задачі.

Для побудови початкового опорного плану транспортної задачі існує кілька методів: північно-західного кута; мінімальної вартості; подвійної переваги; апроксимації Фогеля. Побудову опорного плану зручно подавати у вигляді таблиці, в якій постачальники продукції є рядками, а споживачі — стовпчиками.

Побудову першого плану за методом північно-західного кута починають із заповнення лівої верхньої клітинки таблиці (х11), в яку записують менше з двох чисел а1 та b1. Далі переходять до наступної клітинки в рядку або у стовпчику і заповнюють її, і т. д. Закінчують заповнювати таблицю у правій нижній клітинці.

Ідея методу мінімальної вартості полягає в тому, що на кожному кроці заповнюють клітинку таблиці, яка має найменшу вартість перевезення одиниці продукції. Такі дії повторюють доти, доки не буде розподілено всю продукцію між постачальниками та споживачами.

Задача 1.

Скласти вихідний план транспортної задачі методами північно-західного кута, найменшої вартості та подвійного перевантаження і оцінити його вартість, якщо відомі:

– запаси однотипної продукції торгівельних баз;

– величини попиту магазинів роздрібної торгівлі;

– вартість перевезення одиниці однотипної продукції від -ї торгівельної бази до -го магазину роздрібної торгівлі.

1. ; 2. ;

3. ; 4. ;

5. ; 6. ;

ДОДАТКОВІ ЗАВДАННЯ:

7. ; 8. ;

9. ; 10. ;

Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №9.

Тема заняття: Розв’язання транспортної задачі методом потенціалів.

Мета: сформувати вміння та навички розв’язання транспортної задачі методом потенціалів.

Методичні рекомендації: Вивчити лекцію №4 та ознайомиться з наступною літературою [1 с. 159-189], [2 с.134-158], [3 с.129-168], [4 с.134-175]

Постановка транспортної задачі:

Транспортна задача — це специфічна задача лінійного програмування, застосовувана для визначення найекономічнішого плану перевезення однорідної продукції від постачальників до споживачів.

Математична модель транспортної задачі має такий вигляд:

(1)

за обмежень

; (2)

; (3)

, (4)

де хij — кількість продукції, що перевозиться від і-го постачальника до j-го споживача; сij — вартість перевезення одиниці продукції від і-го постачальника до j-го споживача; аi — запаси продукції і-го постачальника; bj — попит на продукцію j-го споживача.

Якщо в транспортній задачі загальна кількість продукції постачальників дорівнює загальному попиту всіх споживачів, тобто

, (5)

то таку транспорту задачу називають збалансованою, або закритою. Якщо ж така умова не виконується, то транспортну задачу називають незбалансованою, або відкритою.

Планом транспортної задачі називають будь-який невід’єм­ний розв’язок системи обмежень (2)—(4) транспортної задачі, який позначають матрицею .

Оптимальним планом транспортної задачі називають матрицю , яка задовольняє умови задачі і для якої цільова функція (1) набуває найменшого значення.

Т еорема (умова існування розв’язку транспортної задачі). Необхідною і достатньою умовою існування розв’язку транспортної задачі є її збалансованість, тобто .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]