
- •Тема 1. Предмет, методи і завдання дисципліни. Класифікація задач. Лабораторне заняття №1
- •Задача 1.
- •Задача 2.
- •Задача 3.
- •Задача 4.
- •Задача 5.
- •Задача 6.
- •Тема 1. Концептуальні аспекти математичного моделювання економіки.
- •Тема 2. Оптимізаційні економіко-математичні моделі. Лабораторне заняття №2
- •Постановка задачі:
- •Порядок розв’язання:
- •Задача 1
- •Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №3.
- •Геометрична інтерпретація злп
- •Задача 1.
- •Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №4.
- •Постановка завдання:
- •Приклад1.
- •Тема 3. Задача лінійного програмування та методи її розв’язування.
- •Тема 3. Задача лінійного програмування та методи її розв’язування.
- •Задача 1.
- •Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №7.
- •Алгоритм розв’язування задач лп з використанням процедури «Пошук рішення»
- •Задача 1.
- •Задача 2.
- •Задача 3.
- •Задача 4.
- •Задача 5.
- •Задача 6.
- •Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №8.
- •Побудова початкового опорного плану транспортної задачі.
- •Задача 1.
- •Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №9.
- •Метод потенціалів
- •Задача 1
- •Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №10.
- •Постановка завдання:
- •Задача 1
- •Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач. Лабораторне заняття №11.
- •Постановка завдання:
- •Приклад 1
- •Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач.
- •Приклад1.
- •Задача 1
- •Задача 2
- •Лабораторне заняття № 13. Мкр 1.
- •Тема 6.Нелінійні оптимізаційні моделі економічних систем. Лабораторне заняття №14
- •Тема 5. Цілочислове програмування. Лабораторне заняття №15.
- •Геометрична інтерпретація розв’язків цілочислових задач лінійного програмування на площині
- •Задача 1
- •Тема 5. Цілочислове програмування. Лабораторне заняття №16.
- •Постановка завдання:
- •Метод Гоморі
- •Приклад1.
- •Задача 1
- •Тема 6. Нелінійні оптимізаційні моделі економічних систем. Лабораторне заняття №17.
- •Геометрична інтерпретація задачі дробово-лінійного програмування
- •Задача 1
- •Тема 6. Нелінійні оптимізаційні моделі економічних систем. Лабораторне заняття №18.
- •Постановка завдання:
- •Тема 7. Аналіз та управління ризиком в економіці.
- •Приклад 1.
- •Задача 1
- •Задача 2
- •Тема 6. Елементи теорії ігор. Лабораторне заняття № 20.
- •Тема 7. Аналіз та управління ризиком в економіці.
- •Приклад 1.
- •Задача 1
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Задача 6
- •Тема 6. Нелінійні оптимізаційні моделі економічних систем. Лабораторне заняття №22.
- •Постановка завдання:
- •Необхідні та достатні умови безумовного екстремуму функції. Необхідні умови першого порядку
- •Задача 1
- •Тема 6. Нелінійні оптимізаційні моделі економічних систем. Лабораторне заняття №23.
- •Постановка завдання:
- •Стратегія вирішення задачі
- •Задача 1
- •Тема 6. Нелінійні оптимізаційні моделі економічних систем. Лабораторне заняття №24.
- •Лабораторне заняття №25. Мкр 2.
- •Тема 8. Система показників кількісного оцінювання ступеня ризику. Лабораторне заняття №26.
Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №8.
Тема заняття: Побудова вихідних опорних планів транспортної задачі.
Мета: сформувати вміння та навички побудови вихідних опорних планів транспортної задачі методами північно-західного кута, найменшої вартості та подвійного перевантаження.
Методичні рекомендації: Вивчити лекцію №4 та ознайомиться з наступною літературою [1 с. 159-189], [2 с.134-158], [3 с.129-168], [4 с.134-175]
Побудова початкового опорного плану транспортної задачі.
Для побудови початкового опорного плану транспортної задачі існує кілька методів: північно-західного кута; мінімальної вартості; подвійної переваги; апроксимації Фогеля. Побудову опорного плану зручно подавати у вигляді таблиці, в якій постачальники продукції є рядками, а споживачі — стовпчиками.
Побудову першого плану за методом північно-західного кута починають із заповнення лівої верхньої клітинки таблиці (х11), в яку записують менше з двох чисел а1 та b1. Далі переходять до наступної клітинки в рядку або у стовпчику і заповнюють її, і т. д. Закінчують заповнювати таблицю у правій нижній клітинці.
Ідея методу мінімальної вартості полягає в тому, що на кожному кроці заповнюють клітинку таблиці, яка має найменшу вартість перевезення одиниці продукції. Такі дії повторюють доти, доки не буде розподілено всю продукцію між постачальниками та споживачами.
Задача 1.
Скласти вихідний план транспортної задачі методами північно-західного кута, найменшої вартості та подвійного перевантаження і оцінити його вартість, якщо відомі:
– запаси
однотипної продукції торгівельних баз;
– величини
попиту магазинів роздрібної торгівлі;
– вартість
перевезення одиниці однотипної продукції
від
-ї
торгівельної бази до
-го
магазину роздрібної торгівлі.
1.
;
2.
;
3.
;
4.
;
5.
;
6.
;
ДОДАТКОВІ ЗАВДАННЯ:
7.
;
8.
;
9.
;
10.
;
Тема 3. Задача лінійного програмування та методи її розв’язування. Лабораторне заняття №9.
Тема заняття: Розв’язання транспортної задачі методом потенціалів.
Мета: сформувати вміння та навички розв’язання транспортної задачі методом потенціалів.
Методичні рекомендації: Вивчити лекцію №4 та ознайомиться з наступною літературою [1 с. 159-189], [2 с.134-158], [3 с.129-168], [4 с.134-175]
Постановка транспортної задачі:
Транспортна задача — це специфічна задача лінійного програмування, застосовувана для визначення найекономічнішого плану перевезення однорідної продукції від постачальників до споживачів.
Математична модель транспортної задачі має такий вигляд:
(1)
за обмежень
; (2)
; (3)
, (4)
де хij — кількість продукції, що перевозиться від і-го постачальника до j-го споживача; сij — вартість перевезення одиниці продукції від і-го постачальника до j-го споживача; аi — запаси продукції і-го постачальника; bj — попит на продукцію j-го споживача.
Якщо в транспортній задачі загальна кількість продукції постачальників дорівнює загальному попиту всіх споживачів, тобто
, (5)
то таку транспорту задачу називають збалансованою, або закритою. Якщо ж така умова не виконується, то транспортну задачу називають незбалансованою, або відкритою.
Планом
транспортної
задачі називають будь-який невід’ємний
розв’язок системи обмежень (2)—(4)
транспортної задачі, який позначають
матрицею
.
Оптимальним
планом
транспортної
задачі називають матрицю
,
яка задовольняє умови задачі і для якої
цільова функція (1) набуває найменшого
значення.
Т еорема (умова існування розв’язку транспортної задачі). Необхідною і достатньою умовою існування розв’язку транспортної задачі є її збалансованість, тобто .