Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Raya_diplom.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.24 Mб
Скачать

Лекція 3

Тема: «Однорідні рівняння першого порядку»

Мета:

  • вивчення основних положень та визначень з теми «Однорідні диференціальні рівняння першого порядку»;

  • ознайомлення із методами розв'язування однорідних рівнянь першого порядку;

  • поглиблення, розширення знань, отриманих раніше при вивченні диференціальних рівнянь, для розв'язування однорідних рівнянь;

  • розвиток наукового мислення та пам’яті;

  • виховання математичної культури.

При вивченні теми студенти повинні:

знати: означення та види однорідних рівнянь першого порядку, означення однорідної функції;

уміти: визначати однорідне рівняння першого порядку з переліку рівнянь, знаходити загальний та частинний розв'язок однорідного рівняння;

здатні: використовувати алгоритм розв'язування однорідних рівнянь першого порядку.

Основні поняття: однорідна функція, однорідне рівняння першого порядку.

Обладнання: підручники, дидактичний матеріал (таблиці), креслярські матеріали, мультимедійний проектор, комп’ютер.

Час: 2 год.

План лекції

  1. Однорідна функція.

  2. Однорідні рівняння першого порядку.

Список літератури

  1. Pudy A.E., Rakov S.A. Mathematical Analysis. Differential Equations.

  2. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного.

  3. Давидов М.О. Курс математичного аналізу: Підручник: У 3 ч. Ч. 2. Функції багатьох змінних і диференціальні рівняння. – 2-ге вид., перероб. і допов. – К.: Вища школа, 1991 – 336 с.

  4. Еругин Р.П. и др. Курс обыкновенных дифференциальных уравнений.

  5. Матвеев Н.М. Методы интегрирования обыкновенных дифференциальных уравнений.

Текст лекції

  1. Однорідна функція.

Означення 1. Функція називається однорідною функцією n-го порядку щодо змінних х і у, якщо при будь-якому t справедлива тотожність

.

Приклад. - однорідна функція першого порядку, тому що

.

Приклад. - однорідна функція другого порядку, тому що

.

Приклад. - однорідна функція нульового порядку, тому що

.

  1. Однорідні рівняння першого порядку.

Означення 2. Рівняння виду називається однорідним, якщо функції при і є однорідними однакового порядку.

Однорідне рівняння зводиться до вигляду і за допомогою заміни змінних , де , , або зводиться до рівняння із змінними, які відокремлюються.

Приклад. Розв'язати задачу Коші

, .

Розв'язок.

- однорідні функції першого порядку

, , ,

, ,

,

, , , ,

- загальний розв'язок.

Знайдемо частинний розв'язок, який задовольняє початковій умові : , .

- розв'язок задачі Коші.

Лекція 4

Тема: «Лінійні диференціальні рівняння першого порядку»

Мета:

  • вивчення основних положень та визначень з теми «Лінійні диференціальні рівняння першого порядку»;

  • ознайомлення із видами лінійних рівнянь першого порядку та методами їх розв'язування;

  • поглиблення, розширення знань, отриманих раніше при вивченні диференціальних рівнянь, для розв'язування лінійних рівнянь;

  • розвиток візуального мислення та пам’яті;

  • виховання математичної культури.

При вивченні теми студенти повинні:

знати: означення та види лінійних рівнянь першого порядку, методи їх розв'язування;

уміти: визначати лінійне рівняння першого порядку з переліку рівнянь, знаходити загальний та частинний розв'язок лінійного рівняння як однорідного, так і неоднорідного;

здатні: використовувати алгоритм розв'язування лінійних рівнянь першого порядку.

Основні поняття: лінійне рівняння першого порядку (лінійне однорідне, лінійне неоднорідне), підстановка та рівняння Бернуллі, метод Лагранжа.

Обладнання: підручники, дидактичний матеріал (таблиці), креслярські матеріали, мультимедійний проектор, комп’ютер.

Час: 2 год.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]