
- •Б.Н. Уголев древесиноведение с основами лесного товароведения
- •Предисловие
- •Введение
- •Раздел I. Древесиноведение
- •Глава 1. Строение дерева
- •§ 1. Древесные растения
- •§ 2. Основные части дерева
- •1. Относительный объем частей дерева
- •2. Относительный объем коры в стволе
- •Глава 2. Строение древесины и коры
- •§ 3. Макроскопическое строение древесины
- •§ 4. Определение породы по макростроению древесины
- •§ 5. Микростроение древесины
- •3. Размеры трахеид некоторых хвойных пород
- •4. Размеры члеников сосудов в ранней и поздней зонах годичного слоя древесины некоторых кольцесосудистых пород
- •5. Размеры волокон либриформа некоторых пород
- •§ 6. Микростроение сердцевины и коры
- •Глава 3. Химические свойства древесины и коры
- •§ 7. Химический состав древесины и коры
- •6. Химический состав древесины некоторых пород, %
- •7. Химический состав коры, %
- •§ 8. Характеристика органических веществ древесины и коры
- •§ 9. Древесина, кора и древесная зелень как химическое сырье
- •8. Выход основных продуктов при пиролизе древесины и коры
- •Глава 4. Физические свойства древесины и коры
- •§ 10. Внешний вид древесины
- •10. Ширина годичных слоев и содержание поздней древесины у некоторых пород
- •§ 11. Влажность древесины и коры; свойства, связанные с ее изменением
- •11. Равновесная влажность древесины, %, в среде перегретого пара при повышенном давлении
- •14. Тангенциальная усушка ранней и поздней зон
- •15. Коэффициенты усушки Кβ и разбухания Кα древесины
- •16. Давление набухания древесины некоторых пород, мПа
- •17. Максимальная влажность древесины при водопоглощении
- •18. Водопоглощение коры
- •§ 12. Плотность
- •19. Средние значения плотности древесины
- •20. Формулы для определения различных показателей плотности
- •§ 13. Проницаемость древесины жидкостями и газами
- •21. Воздухопроницаемость древесины
- •§ 14. Тепловые свойства древесины
- •23. Коэффициенты теплового расширения сырой и сухой
- •§ 15. Электрические свойства древесины
- •24 Сравнительные данные об удельном объемном и
- •25. Удельное объемное сопротивление древесины
- •26 Влияние влажности на объемное сопротивление древесины
- •27. Электрическая прочность древесины некоторых пород
- •§ 16. Звуковые свойства древесины
- •§ 17. Свойства древесины, проявляющиеся при воздействии излучений
- •29. Характеристика цвета и интенсивности флуоресценции
- •Глава 5. Механические свойства древесины
- •§ 18. Общие сведения о механических свойствах древесины
- •§ 19. Механические испытания древесины; принципы, общие требования и процедура
- •§ 20. Статистический анализ результатов испытаний древесины
- •§ 21. Прочность древесины при сжатии
- •30. Прочность древесины при сжатии вдоль волокон
- •31. Условные пределы прочности при сжатии и местном смятии
- •§ 22. Прочность древесины при растяжении
- •§ 23. Прочность древесины при статическом изгибе
- •34. Прочность древесины при статическом изгибе
- •§ 24. Прочность древесины при сдвиге
- •§ 25. Деформативность древесины при кратковременных нагрузках
- •36. Модули упругости древесины
- •37. Коэффициенты поперечной деформации древесины
- •38. Некоторые характеристики упругости древесины
- •39. Модули сдвига древесины
- •§ 26. Реологические свойства и гигро(термо)-механические деформации древесины
- •§ 27. Длительная прочность и сопротивление усталости древесины
- •§ 28. Ударная вязкость, твердость и износостойкость древесины
- •40. Ударная вязкость древесины
- •41. Статическая твердость древесины
- •43. Ударная твердость древесины
- •§ 29. Способность древесины удерживать крепления, гнуться и раскалываться
- •§ 30. Удельные характеристики механических свойств древесины
- •§ 31. Характеристики древесины как конструкционного материала
- •Глава 6. Изменчивость и взаимосвязи свойств древесины
- •§ 32. Изменчивость свойств древесины
- •48. Влияние категории деревьев и густоты насаждения на
- •§ 33. Связи между свойствами древесины. Неразрушающие методы контроля прочности древесины
- •§ 34. Изменение свойств древесины под воздействием физических и химических факторов
- •49. Влияние температуры и влажности на прочность древесины
- •50. Влияние температуры и влажности на прочность древесины при растяжении поперек волокон в тангенциальном направлении
- •Глава 7. Пороки древесины
- •§ 35. Сучки
- •§ 36. Трещины
- •§ 37. Пороки формы ствола
- •§ 38. Пороки строения древесины
- •§ 39. Химические окраски
- •§ 40. Грибные поражения
- •§ 41. Биологические повреждения
- •§ 42. Инородные включения, механические повреждения и пороки обработки
- •§ 43. Покоробленности
- •Глава 8. Стойкость и защита древесины
- •§ 44. Стойкость древесины
- •51. Относительная стойкость к гниению древесины различных пород
- •§ 45. Способы и средства повышения стойкости древесины
- •Глава 9. Основные лесные породы и их использование
- •§ 46. Хвойные породы
- •§ 47. Лиственные породы
- •§ 48. Иноземные породы
- •Раздел II. Основы лесного товароведения
- •Глава 10. Классификация и стандартизация лесных товаров
- •§ 49. Классификация лесных товаров
- •§ 50. Общие сведения о стандартизации продукции
- •§ 51. Стандартизация и качество лесных товаров
- •Раздел II. Основы лесного товароведения
- •Глава 10. Классификация и стандартизация лесных товаров
- •§ 49. Классификация лесных товаров
- •§ 50. Общие сведения о стандартизации продукции
- •§ 51. Стандартизация и качество лесных товаров
- •Глава 11. Круглые лесоматериалы
- •§ 52. Общая характеристика хлыстов и круглых лесоматериалов
- •52. Нормы допуска сучков и пасынка в круглых лесоматериалах
- •§ 53. Технические требования к круглым лесоматериалам
- •53. Круглые лесоматериалы хвойных и лиственных пород для выработки пиломатериалов
- •55. Круглые лесоматериалы хвойных и лиственных пород
- •56. Круглые лесоматериалы хвойных и лиственных пород
- •57. Круглые лесоматериалы (балансы) хвойных пород для выработки целлюлозы и древесной массы
- •§ 54. Технологическое сырье
- •59. Размеры дровяного сырья для технологических нужд
- •§ 55. Методы измерения размеров и объема круглых лесоматериалов, контроль качества, приемка, маркировка
- •Глава 12. Пилопродукция
- •§ 56. Пиломатериалы
- •§ 57. Заготовки и пиленые детали
- •§ 58. Методы испытаний пиломатериалов и заготовок
- •Глава 13. Строганые, лущеные, колотые лесоматериалы; измельченная древесина
- •§ 59. Строганые, лущеные и колотые лесоматериалы
- •§ 60. Измельченная древесина
- •60. Размеры технологической щепы
- •Глава 14. Композиционные древесные материалы и модифицированная древесина
- •§ 61. Клееная древесина
- •§ 62. Композиционные материалы на основе измельченной древесины
- •§ 63. Модифицированная древесина
- •§ 64. Методы испытаний композиционных древесных материалов и модифицированной древесины
36. Модули упругости древесины
Порода |
Модуль упругости Е, ГПа |
|||||
при сжатии |
при растяжении |
|||||
Еа |
Еr |
Еt |
Еа |
Еr |
Еt |
|
Сосна Ель Дуб Береза |
11,9 14,4 14,2 16,1 |
0,67 0,64 1,40 0,65 |
0,55 0,40 1,01 0,50 |
11,9 14,5 14,2 18,4 |
0,54 0,66 1,18 0,64 |
0,47 0,46 0,91 0,46 |
1ГПа (гигапаскаль) = 109 Па = 104 кгс/см2
Приведенные в работе [49] значения модулей упругости при статическом изгибе получены Н.Л. Леонтьевым путем измерения прогиба по всему пролету (а не в зоне чистого изгиба). Из-за влияния поперечной силы на указанный прогиб эти данные, как показали исследования автора и А.Л. Михайличенко, занижены в среднем на 19 %.
Как видно из табл. 36, модуль упругости вдоль волокон примерно в 20-25 раз выше, чем поперек. Модуль упругости в радиальном направлении выше, чем в тангенциальном направлении поперек волокон по средним данным на 20-50 %
Коэффициенты поперечной деформации. Как известно, при приложении нагрузки к стержню кроме продольной деформации ε появляется поперечная деформация ε'. Коэффициентом поперечной деформации (коэффициентом Пуассона) называется отношение
.
(96)
У ортотропного тела, как уже отмечалось в § 18, шесть коэффициентов поперечной деформации: μrа, μtа, μtr, μаr, μrt, μаt. Каждая пара коэффициентов μ с одинаковым вторым индексом, указывающим направление действия силы, может быть определена на одном образце. Определение μ проводят при испытаниях на сжатие.
Для этой цели, так же как и при определении Е, используют образцы в виде призмы с h = 60 мм, но с большим поперечным сечением (а=b=30мм). На каждом образце по двум тензометрам, укрепленным на противоположных гранях (рис. 60), последовательно измеряют деформацию сначала в направлении действия сипы, а затем в перпендикулярных направлениях. Процедура испытаний примерно такая же, как и для определения модуля упругости при сжатии. Однако пределы нагружения при сжатии вдоль волокон составляют 2·103- 9·103Н, а при сжатии поперек волокон 2·102- 9·102 Н. По трем последним показаниям пары тензометров определяют сначала удлинение или укорочение Δl, а затем среднюю деформацию в соответствующем направлении. Коэффициент μw вычисляют по формуле (96).
Для пересчета показателей к нормализованной влажности используют формулу (70) с поправочным коэффициентом а, равным для всех пород при сжатии поперек волокон 0,02. Значения коэффициентов поперечной деформации для некоторых наших пород, полученные Н.Л Леонтьевым при влажности 10-15%, приведены в таблице.
37. Коэффициенты поперечной деформации древесины
Порода |
Коэффициенты поперечной деформации |
|||||
Еа |
Еr |
Еt |
Еа |
Еr |
Еt |
|
Сосна Ель Дуб Береза |
0,490 0,440 0,430 0,580 |
0,410 0,411 0,410 0,450 |
0,030 0,017 0,070 0,043 |
0,790 0,480 0,830 0,810 |
0,037 0,031 0,090 0,040 |
0,380 0,250 0,340 0,490 |
Приведенные в табл. 37 данные, полученные при измерении деформации рычажными тензометрами, следует рассматривать как ориентировочные. Более надежные данные получаются, если на каждом образце определять не только два коэффициента поперечной деформации (допустим, μrа и μtа), но и соответствующий модуль упругости (Еа), используя наклеенные "крестом" тензорезисторы на все четыре грани образца. Определенные таким способом данные [5] для древесины сосны при сжатии приведены в табл. 38. Они в большей мере, чем данные табл. 37, удовлетворяют соотношениям, вытекающим из допущения о существовании упругого потенциала:
.
(97)
Этим соотношениям лучше соответствуют и данные для древесины березы (табл. 38), полученные А.В. Дорожко (БТИ) при испытаниях на растяжение с использованием тензометров на базе механотронных преобразователей. При испытаниях образцов березы на сжатие было экспериментально установлено существенное влияние приторцового эффекта, приводящего к завышению поперечных деформаций в зонах, распространяющихся на расстоянии 1,5 b от каждого торца.