Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен физхимия.docx
Скачиваний:
242
Добавлен:
06.02.2020
Размер:
72.04 Mб
Скачать

97. Понятие катализа. В чем состоит ключевое отличие гомогенного катализа от гетерогенного? От каких факторов зависит скорость реакции в случае гомогенного и в случае гетерогенного катализа?

Скорость гомогенной реакции (vгомог) определя­ется как изменением количества вещества в еди­ницу времени в единице объема:

где Δn — изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); Δt — интервал времени (с, мин); V — объем газа или раствора (л).

98. Приведите уравнение Михаэлиса-Ментен. Каков физический смысл константы Михаэлиса? Какова стационарная скорость ферментативного процесса (w), если константа Михаэлиса равна концентрации субстрата Km=C(S)?

99. Ферментативный катализ. Теория Михаэлиса-Ментен. Основные постулаты теории Константа Михаэлиса. Экспериментальные методы определения константы Михаэлиса.

100. Гетерогенный катализ. Основные стадии каталитических гетерогенных реакций. Приведите основные теории гетерогенного катализа: мультиплетная теория Баландина, теория активных ансамблей Кобозева, электронная теория.

Доп. инфо:

Электронные представления в катализе начали развиваться в 30-х годах XX в. Писаржевским, Волькенштейном, Хауффе и др. Электронная теория катализа основывается на квантовомеханической зонной теории твердого тела.

Рассмотрим ионный кристалл полупроводника MR, состоящий из однозарядных катионов М+ и анионов .R-. Электропроводность такого кристалла связана с тем, что часть электронов, обладающая повышенной энергией, делокализуется и может свободно перемещаться по кристаллу. В свете элементарных химических представлений это значит, что электрон переходит от аниона к катиону с образованием в двух соседних узлах кристаллической решетки двух нейтральных атомов:

У ионов М+ и R- (например, Na+ и С1-) имеются замкнутые восьмиэлектронные оболочки и отсутствуют свободные неспаренные (валентные) электроны. У электроположительного атома имеется валентный электрон—свободная положительная валентность (n-связь). У электроотрицательного атома отсутствует один электрон в восьмиэлектронной оболочке, что равнозначно появлению эффективного положительного заряда (дырке) или отрицательной свободной валентности (р-связь). Для катализа имеет значение появление таких свободных валентностей на поверхности твердого тела:

Горизонтальные отрезки на схеме изображают поверхность катализатора. Электрон может перемещаться по катионной подрешетке (электронная проводимость); дырка—по анионной подрешетке (дырочная проводимость).

В настоящее время эти элементарные представления получили уточнение в зонной теории твердого тела. В твердом теле электронные энергетические уровни атома расщепляются в энергетические полосы. При этом в полупроводниках между энергетической полосой валентных электронов атомов твердого тела (валентная зона) и энергетической полосой возбужденных электронов (зона проводимости) имеется некоторый промежуток (запрещенная зона), в котором (в случае идеального кристалла без примесей) нет энергетических уровней электронов. Чтобы перейти из валентной зоны в зону проводимости, электрону нужно иметь некоторую минимальную избыточную энергию активации, равную ширине запрещенной полосы. Переход электрона из валентной зоны в зону проводимости соответствует перескоку электрона с аниона на катион и его перемещению по катионной подрешетке (электронная, или n-проводимость). После перехода электрона в зону проводимости в валентной зоне остается дырка, которая соответствует аниону, лишенному электрона, и перемещению этой дырки по анионной подрешетке (дырочная, или р-проводимость).

Электронная теория катализа допускает существование разных видов связи хемосорбированных частиц из газа на поверхности полупроводника: слабой одноэлектронной связи и двух видов прочной двухэлектронной связи — акцепторной и донорной, которые в свою очередь могут иметь ковалентный или ионный характер в зависимости от природы адсорбируемой частицы. Предположим, что адсорбируемая частица является одновалентным атомом: электроположительным атомом А (типа Na) или электроотрицательным атомом В (типа С1), а катализатор — полупроводниковый ионный кристалл состава MR (типа NaCl), который имеет в узлах решетки и на поверхности кристалла частицы: М+, R-, М и R. При этом будут наблюдаться следующие шесть случаев химической связи, показанные на схеме (в двух случаях — 2 и 5 — связь не образуется).

Как видно из схемы, при адсорбции атома (или радикала) на свободной валентности образуется прочная связь (случаи 3, 4 и 7, 8). При этом свободная валентность расходуется на образование химической связи, которая в предельных случаях может быть ионной или ковалентной. Такой адсорбированный атом или радикал не реакционноспособный. У адсорбированного атома или радикала в состоянии слабой связи остается свободная валентность (случай 1 и 6); он является реакционноспособным и вступает в химические реакции.

Свободные валентности (электроны и дырки) могут перемещаться (блуждать) по кристаллу. Поэтому прочная связь может переходить в слабую, а слабая в прочную. В зависимости от характера полупроводника ( n- или р - полупроводник) на нем будет протекать адсорбция преимущественно на прочной акцепторной или прочной донорной связи и соответственно будет меняться избирательность (селективность) полупроводникового катализатора. Если адсорбируются молекулы, то при адсорбции их в форме прочной связи в них обычно рвутся связи между атомами, молекула превращается в радикал и это способствует осуществлению катализа. Например, при адсорбции двухатомной молекулы АВ с одинарной связью на прочной связи происходит диссоциация молекулы на адсорбированные атомы А и В. При адсорбции молекулы с двойной связью рвется одна связь и образуется радикал. Эти процессы можно представить на схеме