- •Глава 1. Усиление электрических сигналов
- •§1. Понятие об усилении электрических сигналов
- •Глава 1. Усиление электрических сигналов при помощи электронных приборов
- •§2. Принципы усиления электрических сигналов
- •Глава 1. Усиление электрических сигналов при помощи электронных приборов
- •Глава 2. Классификация усилителей
- •§1. Введение
- •Глава 2. Классификация усилителей
- •§2. Классификация усилителей
- •§3. Усилители непрерывных и дискретных сигналов
- •§4. Усилители сигналов с различными абсолютными
- •Глава 2. Классификация усилителей
- •§5. Классификация усилителей по назначению
- •§6. Классификация усилителей по виду примененных
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и
- •§1. Основные технические показатели усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •§2. Линейные искажения
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •§3. Переходная характеристика
- •Глава 3. Основные параметры и характеристики усилителей 1, при t 〉 0
- •§4. Нелинейные искажения
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей При усилении импульсных сигналов нелинейность усилителя
- •§5. Собственные помехи и динамический диапазон
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей Рис. 3.13. Амплитудные характеристики усилителя: 1 – идеальная, 2 – реальная
- •Глава 4. Режимы работы усилительных элементов глава 4. Режимы работы усилительных элементов
- •§1. Режим а
- •§2. Режим в
- •Глава 4. Режимы работы усилительных элементов
- •§3. Режим с
- •§4. Режим д
- •Глава 4. Режимы работы усилительных элементов
- •§5. Точка покоя. Напряжение смещения
- •Глава 4. Режимы работы усилительных элементов
- •§6. Уравнение нагрузочного режима
- •Глава 4. Режимы работы усилительных элементов §7. Нагрузочные линии усилителя и их построение Зависимости между мгновенными значениями напряжений и
- •Глава 4. Режимы работы усилительных элементов
- •Глава 4. Режимы работы усилительных элементов
- •Глава 5. Обратная связь в усилителях Глава 5. Обратная связь в усилителях §1. Введение в общем случае ос можно определить как связь выходной
- •Глава 5. Обратная связь в усилителях
- •§2. Способы получения и виды обратной связи
- •Глава 5. Обратная связь в усилителях
- •Глава 5. Обратная связь в усилителях При подключении входа цепи ос к нагрузке rh и резистору rt ,
- •Глава 5. Обратная связь в усилителях
- •§3. Коэффициент усиления каскада и коэффициент
- •Глава 5. Обратная связь в усилителях
- •§4. Амплитудно-частотная и фазо-частотная
- •Глава 5. Обратная связь в усилителях
- •Глава 5. Обратная связь в усилителях
- •§5. Амплитудная и динамическая характеристики,
- •Глава 5. Обратная связь в усилителях
- •Глава 5. Обратная связь в усилителях
- •§6. Входное и выходное сопротивление усилителя
- •Глава 5. Обратная связь в усилителях При параллельной ос, как это следует из рассмотрения рис.
- •Глава 5. Обратная связь в усилителях
- •§7. Устойчивость работы, стабильность параметров и
- •Глава 5. Обратная связь в усилителях
- •Глава 6. Усилители на биполярных транзисторах глава 6. Усилители на биполярных транзисторах
- •§1. Однокаскадный усилитель на биполярном
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •§2. Усилители с емкостной связью
- •Глава 6. Усилители на биполярных транзисторах
- •§3. Каскад в области средних частот
- •Глава 6. Усилители на биполярных транзисторах Рис. 6.5. Статические характеристики транзистора при включении по схеме с общей базой
- •Глава 6. Усилители на биполярных транзисторах
- •§4. Внутренняя обратная связь
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •§5. Полный анализ
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •§6. Каскад в области больших времен и низших частот
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •§7. Каскад в области малых времен и высших частот
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах t−
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах Время нарастания при этом выражается формулой γ э τ oe .(6.81)
- •§8. Расчет резисторного каскада на биполярном
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах III. Расчет результирующих показателей
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 7. Усилители
- •§1. Введение
- •Глава 7. Усилители с обратной связью Рис. 7.2. Схема усилительного каскада с трансформаторной связью (с параллельным включением трансформатора)
- •§2. Коэффициент трансформации
- •Глава 7. Усилители с обратной связью
- •§3. Область средних частот
- •Глава 7. Усилители с обратной связью
- •§4. Область низших частот
- •Глава 7. Усилители с обратной связью
- •§5. Максимальная частота генерации транзистора
- •Глава 7. Усилители с обратной связью
- •§6. Однотактный трансформаторный усилитель мощности
- •Глава 7. Усилители с обратной связью Входной сигнал создает I bx , часть которого управляет ба-
- •§7. Двухтактные бестрансформаторные усилители
- •Глава 7. Усилители с обратной связью
- •Глава 7. Усилители с обратной связью
- •Глава 7. Усилители с обратной связью
- •§8. Расчет бестрансформаторного каскада
- •Глава 7. Усилители с обратной связью
- •Глава 7. Усилители с обратной связью 16. Емкость разделительного конденсатора в цепи нагрузки 2
- •Глава 8. Эмиттерные повторители
- •§1. Однокаскадный усилитель на биполярном
- •Глава 8. Эммитерные повторители
- •Глава 8. Эммитерные повторители §2. Динамический диапазон в отличие от обычных каскадов эп допускает работу со
- •§3. Сложные эмиттерные повторители
- •Глава 8. Эммитерные повторители
- •Глава 8. Эммитерные повторители Рис. 8.4. Составной повторитель с внутренней обратной связью Очевидно, что эквивалентное увеличение сопротивления rК 1
- •Глава 8. Эммитерные повторители Повторитель с динамической нагрузкой Как в простом, так и в составном повторителе увеличение
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители
- •§1. Общие сведения
- •Глава 9. Операционные усилители Рис. 9.2. Принцип отрицательной обратной связи Часть выходного напряжения возвращается через цепь об-
- •§2. Идеальный операционный усилитель
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители
- •§3. Внутренняя структура операционных усилителей
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители Для того чтобы определить коэффициент усиления синфаз-
- •Глава 9. Операционные усилители
- •§4. Схема замещения операционного усилителя
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители
- •§5. Коррекция частотной характеристики
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители Подстраиваемая частотная коррекция Полная частотная коррекция операционного усилителя гаран-
- •Глава 9. Операционные усилители
- •§6. Параметры операционных усилителей
- •Глава 9. Операционные усилители Как следует из (9.16), соответствующее отклонение, приве-
- •Глава 9. Операционные усилители
- •§7. Типы операционных усилителей
- •Глава 9. Операционные усилители
- •Глава 10. Функциональные устройства на операционных усилителях глава 10. Функциональные устройства на операционных усилителях
- •§1. Линейные аналоговые вычислительные схемы на оу
- •Глава 10. Функциональные устройства на операционных усилителях то выходное напряжение определяется выражением: 1 t
- •Глава 10. Функциональные устройства на операционных усилителях Рис. 10.4. Частотная характеристика интегратора в заключение отметим, что к операционным усилителям, ра-
- •Глава 10. Функциональные устройства на операционных усилителях Устранить эти недостатки позволяет включение последова-
- •§2. Схемы линейного преобразования сигналов.
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях Приравняв нулю коэффициент при u 2 , найдем условие неза-
- •Глава 10. Функциональные устройства на операционных усилителях
- •§3. Преобразователь отрицательного сопротивления
- •Глава 10. Функциональные устройства на операционных усилителях Рис. 10.13. Схема неинвертирующего интегратора Операторная передаточная функция этой цепи, определяемая
- •§4. Фильтры нижних частот
- •Глава 10. Функциональные устройства на операционных усилителях 2
- •Глава 10. Функциональные устройства на операционных усилителях
- •§5. Фильтры верхних частот
- •Глава 10. Функциональные устройства на операционных усилителях Избирательный (селективный) фильтр предназначен для вы-
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях Если ачх фильтра второго порядка оказывается недоста-
- •Глава 10. Функциональные устройства на операционных усилителях §6. Измерительный усилитель на одном оу Во многих измерительных схемах необходимо измерять раз-
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях
- •§7. Схемы нелинейного преобразования сигналов на оу.
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях
- •§8. Прецизионные выпрямители на оу
- •Глава 10. Функциональные устройства на операционных усилителях При переходе в режим пропускания оу сначала должен вый-
- •Глава 10. Функциональные устройства на операционных усилителях
- •§9. Генераторы сигналов на оу
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях Анализ схемы мультивибратора позволяет записать диффе- ренциальное уравнение: du сU − uс
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях Коэффициент петлевого усиления должен, таким образом,
- •Глава 10. Функциональные устройства на операционных усилителях Рис. 10.37. Блок-схема функционального генератора Как показано на рис. 10.34, генератор прямоугольного и тре-
§5. Максимальная частота генерации транзистора
||=
R вых R Н .(7.17)ωn 2 =L2τn 2 '
В зависимости от значения R Н граничная частота и посто-
1
'
Максимальная частота генерации не является параметром,
специфичным только для генераторов. Она характеризует пре-
дельные частотные и усилительные возможности транзисторов
независимо от схемы их использования. Поэтому этот важней-
ший параметр рассматривается в настоящем параграфе, исходя
из теории трансформаторных усилителей.
Очевидно, что самовозбуждение схемы (при наличии обрат-
ной связи) возможно только тогда, когда коэффициент передачи
мощности в каскаде превышает единицу. Поскольку коэффициент
K P является, вообще говоря, функцией частоты, максимальную
частоту генерации (или, что то же самое, максимальную частоту
усиления мощности) можно найти из условия K p (ω) = 1 . При этом
подразумевается, что в каскаде выполнены условия согласова-
ния, так как в противном случае передача мощности не будет оп-
тимальной и, соответственно, максимальная частота не будет
предельно возможной.
– 134 –
Положим
в основу анализа выражение (7.14), но учтем
при
этом
частотную зависимость параметров.
Вместо r
K
использу-
≈ем
величину Ζ
K
=
r
K
jωГлава 7. Усилители с обратной связью
(поскольку рассматривается область весьма высоких частот), а
1
1
для коэффициента передачи β примем β =
β
ωβ ωαβ.≈≈
1 + jω ωβjωω
Кроме того, положим β γ б 0 〈〈1. Это вполне оправдано не
только тем, что β существенно уменьшается с ростом частоты,
но и тем, что сопротивление r Э (а следовательно, и коэффициент
бы повысить максимальную частоту генерации.
γб 0 ), как увидим ниже, выгодно делать как можно меньше, что-
Подставляя в выражение (7.14) значения Ζ K , β и
1 + β γ б 0 ≈ 1 , получаем коэффициент передачи мощности в обла-
сти высоких частот:
Kp=
ω
α. (7.18)4 ω C K (r Э + r б )
2
Теперь, полагаяK P = 1 , легко найти максимальную частоту
генерации:
f
α.8π(r Э + r б )C K
Как видим, величина f ген растет с уменьшением сопротив-
ления r Э , о чем говорилось раньше. При условии r Э 〈〈 r б , т.е. при
достаточно большом эмиттерном токе, частота f ген достигает
f ген ≈
своего предельного значения
– 135 –
Л.В.
Кропочева. «Усилительные устройства»
f
ген.
макс ≈
f
8π r б C K
§6. Однотактный трансформаторный усилитель мощности
Основные показатели: P
H – полезная мощность, отдаваемаяв нагрузку, η – коэффициент нелинейных искажений, K Г – поло-
са пропускания АЧХ.
Основной задачей при проектировании усилителя мощности
является согласование R ВЫХ с R H по мощности, т.е. R ВЫХ = R H ,
′R
Н = RH η 2 , η =N2
, R
ВЫХ < R ВХN1
для согласования трансформатор должен быть понижающим ( η〈1 ).
Однотактные усилители обычно работают в режиме А. Вы-
ходной трансформатор служит для согласования сопротивления
нагрузки с R ВЫХ транзистора.
Рис. 7.5. Однотактный усилитель мощности
– 136 –
