- •Глава 1. Усиление электрических сигналов
- •§1. Понятие об усилении электрических сигналов
- •Глава 1. Усиление электрических сигналов при помощи электронных приборов
- •§2. Принципы усиления электрических сигналов
- •Глава 1. Усиление электрических сигналов при помощи электронных приборов
- •Глава 2. Классификация усилителей
- •§1. Введение
- •Глава 2. Классификация усилителей
- •§2. Классификация усилителей
- •§3. Усилители непрерывных и дискретных сигналов
- •§4. Усилители сигналов с различными абсолютными
- •Глава 2. Классификация усилителей
- •§5. Классификация усилителей по назначению
- •§6. Классификация усилителей по виду примененных
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и
- •§1. Основные технические показатели усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •§2. Линейные искажения
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •§3. Переходная характеристика
- •Глава 3. Основные параметры и характеристики усилителей 1, при t 〉 0
- •§4. Нелинейные искажения
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей При усилении импульсных сигналов нелинейность усилителя
- •§5. Собственные помехи и динамический диапазон
- •Глава 3. Основные параметры и характеристики усилителей
- •Глава 3. Основные параметры и характеристики усилителей Рис. 3.13. Амплитудные характеристики усилителя: 1 – идеальная, 2 – реальная
- •Глава 4. Режимы работы усилительных элементов глава 4. Режимы работы усилительных элементов
- •§1. Режим а
- •§2. Режим в
- •Глава 4. Режимы работы усилительных элементов
- •§3. Режим с
- •§4. Режим д
- •Глава 4. Режимы работы усилительных элементов
- •§5. Точка покоя. Напряжение смещения
- •Глава 4. Режимы работы усилительных элементов
- •§6. Уравнение нагрузочного режима
- •Глава 4. Режимы работы усилительных элементов §7. Нагрузочные линии усилителя и их построение Зависимости между мгновенными значениями напряжений и
- •Глава 4. Режимы работы усилительных элементов
- •Глава 4. Режимы работы усилительных элементов
- •Глава 5. Обратная связь в усилителях Глава 5. Обратная связь в усилителях §1. Введение в общем случае ос можно определить как связь выходной
- •Глава 5. Обратная связь в усилителях
- •§2. Способы получения и виды обратной связи
- •Глава 5. Обратная связь в усилителях
- •Глава 5. Обратная связь в усилителях При подключении входа цепи ос к нагрузке rh и резистору rt ,
- •Глава 5. Обратная связь в усилителях
- •§3. Коэффициент усиления каскада и коэффициент
- •Глава 5. Обратная связь в усилителях
- •§4. Амплитудно-частотная и фазо-частотная
- •Глава 5. Обратная связь в усилителях
- •Глава 5. Обратная связь в усилителях
- •§5. Амплитудная и динамическая характеристики,
- •Глава 5. Обратная связь в усилителях
- •Глава 5. Обратная связь в усилителях
- •§6. Входное и выходное сопротивление усилителя
- •Глава 5. Обратная связь в усилителях При параллельной ос, как это следует из рассмотрения рис.
- •Глава 5. Обратная связь в усилителях
- •§7. Устойчивость работы, стабильность параметров и
- •Глава 5. Обратная связь в усилителях
- •Глава 6. Усилители на биполярных транзисторах глава 6. Усилители на биполярных транзисторах
- •§1. Однокаскадный усилитель на биполярном
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •§2. Усилители с емкостной связью
- •Глава 6. Усилители на биполярных транзисторах
- •§3. Каскад в области средних частот
- •Глава 6. Усилители на биполярных транзисторах Рис. 6.5. Статические характеристики транзистора при включении по схеме с общей базой
- •Глава 6. Усилители на биполярных транзисторах
- •§4. Внутренняя обратная связь
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •§5. Полный анализ
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •§6. Каскад в области больших времен и низших частот
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •§7. Каскад в области малых времен и высших частот
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах t−
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах Время нарастания при этом выражается формулой γ э τ oe .(6.81)
- •§8. Расчет резисторного каскада на биполярном
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 6. Усилители на биполярных транзисторах III. Расчет результирующих показателей
- •Глава 6. Усилители на биполярных транзисторах
- •Глава 7. Усилители
- •§1. Введение
- •Глава 7. Усилители с обратной связью Рис. 7.2. Схема усилительного каскада с трансформаторной связью (с параллельным включением трансформатора)
- •§2. Коэффициент трансформации
- •Глава 7. Усилители с обратной связью
- •§3. Область средних частот
- •Глава 7. Усилители с обратной связью
- •§4. Область низших частот
- •Глава 7. Усилители с обратной связью
- •§5. Максимальная частота генерации транзистора
- •Глава 7. Усилители с обратной связью
- •§6. Однотактный трансформаторный усилитель мощности
- •Глава 7. Усилители с обратной связью Входной сигнал создает I bx , часть которого управляет ба-
- •§7. Двухтактные бестрансформаторные усилители
- •Глава 7. Усилители с обратной связью
- •Глава 7. Усилители с обратной связью
- •Глава 7. Усилители с обратной связью
- •§8. Расчет бестрансформаторного каскада
- •Глава 7. Усилители с обратной связью
- •Глава 7. Усилители с обратной связью 16. Емкость разделительного конденсатора в цепи нагрузки 2
- •Глава 8. Эмиттерные повторители
- •§1. Однокаскадный усилитель на биполярном
- •Глава 8. Эммитерные повторители
- •Глава 8. Эммитерные повторители §2. Динамический диапазон в отличие от обычных каскадов эп допускает работу со
- •§3. Сложные эмиттерные повторители
- •Глава 8. Эммитерные повторители
- •Глава 8. Эммитерные повторители Рис. 8.4. Составной повторитель с внутренней обратной связью Очевидно, что эквивалентное увеличение сопротивления rК 1
- •Глава 8. Эммитерные повторители Повторитель с динамической нагрузкой Как в простом, так и в составном повторителе увеличение
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители
- •§1. Общие сведения
- •Глава 9. Операционные усилители Рис. 9.2. Принцип отрицательной обратной связи Часть выходного напряжения возвращается через цепь об-
- •§2. Идеальный операционный усилитель
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители
- •§3. Внутренняя структура операционных усилителей
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители Для того чтобы определить коэффициент усиления синфаз-
- •Глава 9. Операционные усилители
- •§4. Схема замещения операционного усилителя
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители
- •§5. Коррекция частотной характеристики
- •Глава 9. Операционные усилители
- •Глава 9. Операционные усилители Подстраиваемая частотная коррекция Полная частотная коррекция операционного усилителя гаран-
- •Глава 9. Операционные усилители
- •§6. Параметры операционных усилителей
- •Глава 9. Операционные усилители Как следует из (9.16), соответствующее отклонение, приве-
- •Глава 9. Операционные усилители
- •§7. Типы операционных усилителей
- •Глава 9. Операционные усилители
- •Глава 10. Функциональные устройства на операционных усилителях глава 10. Функциональные устройства на операционных усилителях
- •§1. Линейные аналоговые вычислительные схемы на оу
- •Глава 10. Функциональные устройства на операционных усилителях то выходное напряжение определяется выражением: 1 t
- •Глава 10. Функциональные устройства на операционных усилителях Рис. 10.4. Частотная характеристика интегратора в заключение отметим, что к операционным усилителям, ра-
- •Глава 10. Функциональные устройства на операционных усилителях Устранить эти недостатки позволяет включение последова-
- •§2. Схемы линейного преобразования сигналов.
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях Приравняв нулю коэффициент при u 2 , найдем условие неза-
- •Глава 10. Функциональные устройства на операционных усилителях
- •§3. Преобразователь отрицательного сопротивления
- •Глава 10. Функциональные устройства на операционных усилителях Рис. 10.13. Схема неинвертирующего интегратора Операторная передаточная функция этой цепи, определяемая
- •§4. Фильтры нижних частот
- •Глава 10. Функциональные устройства на операционных усилителях 2
- •Глава 10. Функциональные устройства на операционных усилителях
- •§5. Фильтры верхних частот
- •Глава 10. Функциональные устройства на операционных усилителях Избирательный (селективный) фильтр предназначен для вы-
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях Если ачх фильтра второго порядка оказывается недоста-
- •Глава 10. Функциональные устройства на операционных усилителях §6. Измерительный усилитель на одном оу Во многих измерительных схемах необходимо измерять раз-
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях
- •§7. Схемы нелинейного преобразования сигналов на оу.
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях
- •§8. Прецизионные выпрямители на оу
- •Глава 10. Функциональные устройства на операционных усилителях При переходе в режим пропускания оу сначала должен вый-
- •Глава 10. Функциональные устройства на операционных усилителях
- •§9. Генераторы сигналов на оу
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях Анализ схемы мультивибратора позволяет записать диффе- ренциальное уравнение: du сU − uс
- •Глава 10. Функциональные устройства на операционных усилителях
- •Глава 10. Функциональные устройства на операционных усилителях Коэффициент петлевого усиления должен, таким образом,
- •Глава 10. Функциональные устройства на операционных усилителях Рис. 10.37. Блок-схема функционального генератора Как показано на рис. 10.34, генератор прямоугольного и тре-
вается
по абсолютному значению; при ООС пo току
выходное со-
противление
с увеличением K CKB
возрастает.
характеристик
усилителяГлава 5. Обратная связь в усилителях
§7. Устойчивость работы, стабильность параметров и
Во избежание потери устойчивости и превращения усилите-
ля с ОС в автогенератор необходимо удовлетворить некоторым
требованиям к амплитуде и фазе колебаний при прохождении пос-
ледних по петле ОС. Из теории колебаний известно, что самовоз-
буждение в электрической системе с ОС наступает при двух ус-
ловиях: в замкнутой цепи (петле ОС) коэффициент передачи (уси-
ления) должен быть равен единице ( β K CKB = 1 ), а сумма всех фа-
зовых сдвигов dϕ , которые получает колебание при одноразовом
обходе петли ОС, должна быть равна 2kπ (где k = 1,2, ! , π – на-
туральный ряд чисел), т.е. 0°, 360°, 720° и т.д. Частота, на которой
последнее условие выполняется, и есть частота возникающих ко-
лебаний. Если не выполняется хотя бы одно из условий (баланса
амплитуд или баланса фаз), то самовозбуждение не наступает, и
система способна усиливать сигналы.
Рассматривая уравнения (5.3) и (5.4), можно прийти к следу-
ющим выводам. Частотно-независимая ООС, в принципе, не вы-
зывает генерирования колебаний, так как для нее не выполняется
условие фазового баланса. Генерирование может возникнуть в
определенных выше условиях только при ПОС, и опасность его
возникновения в усилителе тем больше, чем ближе значение пет-
левого усиления β K CKB к единице.
Как уже было отмечено при рассмотрении влияния ОС на АЧХ
и ФЧХ, зависимость коэффициента передачи (усиления) и фазового
сдвига от частоты обусловлена реактивными элементами, присут-
ствующими в цепях межкаскадной связи и УУ. Кроме того, фазо-
вый сдвиг зависит от типовой схемы включения УУ (инвертирую-
щий или не инвертирующий каскад). В наиболее распространенных
резистивных широкополосных усилителях на достаточно низких
– 75 –
Л.В.
Кропочева. «Усилительные устройства»
частотах
(значительно ниже f H
)
каждой цепью, состоящей из раз-
делительного
конденсатора и резистора межкаскадной
связи, вно-
сится
сдвиг по фазе, в пределе равный 90°, а на
высоких частотах
(значительно
выше f B
)
каждый каскад вносит сдвиг по фазе, в
пределе
равный – 90° и определяемый входной
емкостью каскада
и
выходным сопротивлением нагрузки
предыдущего каскада. Сле-
довательно,
суммарный сдвиг фазы не превышает 270°.
Поэтому
однокаскадный
резистивный УНЧ работает стабильно и
практи-
чески
не возбуждается при любой глубине ОС.
Двухкаскадные
резистивные усилители включают по
край-
ней мере две разделительные цепи связи, вызывающие на низких
частотах предельный сдвиг фазы 180°, а также две цепи, дей-
ствующие подобным образом и на высоких частотах. Это (с уче-
том сдвига фаз, который может внести типовая схема включения
УУ) принципиально может привести к трансформации в некото-
рой области как низких, так и высоких частот одного вида ОС в
другой, например, отрицательной в положительную.
Если усилитель состоит из нескольких (двух и более) каска-
дов, то обычно стремятся охватить ОС весь усилитель. При этом
существенно усложняется выполнение условий устойчивости уси-
лителя из-за возрастания суммарного фазового сдвига в петле
ОС, особенно при использовании трансформаторов, обладающих
индуктивностью рассеяния. Известно, что трансформатор в за-
висимости от согласованного или встречного включения его об-
моток может внести сдвиг фаз, соответственно равный 0° или
180°. Индуктивность рассеяния трансформатора, особенно при ем-
костной нагрузке на его выходе, приводит к такому дополнитель-
ному сдвигу фаз в области высоких и превышающих их во много
раз частотах, что при введении ОС на этих частотах могут со-
здаться условия генерирования колебаний даже в двухкаскадном
УНЧ.
Таким образом, чем большее число каскадов охватывается
ООС, тем больше вероятность получения дополнительного фазо-
вого сдвига 180° на частотах, близких к границам полосы пропус-
кания, и, следовательно, больше опасность самовозбуждения. Это
– 76 –
