Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ Акулова ЭиН, Рад. 2 курс.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.27 Mб
Скачать

Part 2. Speaking practice

6. Answer the following questions to the text “Vacuum Tubes”.

1. What is electronics? 2. What types of vacuum tubes do you know? 3. What is a diode? 4. What is a triode? 5. Does a diode permit current to flow in two directions? 6. Where are diodes used? 7. How does the grid influence the electron flow?

7. Say what information from the text was new to you. Use the following phrases to start your answer:

In my opinion. To my mind. There was nothing new… I have learnt some new information in this text. To be more detailed;

8. Describe the basic tube types. Use the following phrases in your answer:

First of all I would like to say that … Truly speaking … As far as I can remember … If I am not mistaken …

9. Make up a dialogue on the following situation:

You are at the job interview. Have a talk with an employer and answer his questions about your background (the university you graduated from, your speciality, some special questions from the field of electronics). Use some information from text 1.

Part 3. Translation practice

10. Выполните следующие предтекстовые задания:

  1. Прочитайте текст 2.

  2. В каждом предложении найдите подлежащее и сказуемое.

  3. Найдите группы зависимых от них слов (второстепенные члены предложения).

  4. Переведите все незнакомые слова. Выпишите термины в словарь и найдите их значение по словарю.

  5. Определите, к какой предметной области относится этот текст.

  6. Сделайте письменный перевод текста 2. Перечитайте текст и отредактируйте его (уберите повторы слов; избегайте смещения логического ударения, поэтому главную мысль помещайте в конец предложения; переводите цепочки из существительных справа налево, способом смыслового развертывания)

  7. Обратите внимание на перевод имен собственных.

Запомните следующие правила:

  • Названия газет и журналов не переводятся, а транскрибируются, причем артикль опускается.

  • Названия компаний, фирм, кораблей, улиц и площадей обычно транскрибируются.

  • Названия географических объектов передаются двумя способами: путем перевода (калькирования) и путем транскрипции, в зависимости от того, что является традиционным в международной практике.

  • Обычно перед или после транскрибированного названия фирмы для сведения русского читателя дается пояснение, чем данная фирма занимается, например: «автомобильная компания Дженерал моторз корпорейшен».

Text 2 cmos Technology

State-of-the-art CMOS processes, such as IBM’s 9S2 process based on SOI (silicon-on-insulator) technology on 300 mm wafers, feature a minimal physical gate length of less than 100 nm and up to eight (copper) metallization levels (see Fig. 1.1). Such advanced CMOS processes are required for the fabrication of today’s and tomorrow’s microprocessors comprising tens of millions of transistors on a single chip. An example is Apple Computer’s 64-bit PowerPC-G5 processor with more than 58 million transistors, manufactured using IBM’s 90nm CMOS technology. Researchers at IBM’s T. J. Watson Research Center have recently used the cop-per-based interconnect technology of such modern CMOS processes to fabricate microelectromechanical devices, namely r.f. switches and resonators. Up to now, however, most commercially available microsystems combining (micromachined) transducer elements and integrated electronics on a single chip rely on CMOS or BiCMOS processes with minimum feature sizes typically between 0.5 and 3 μm and 4 or 6 in wafer sizes. While the underlying CMOS technologies are between 10 and 15 years old, their capabilities are sufficient for most microsystem applications. An example is the pressure sensor KP100 by Infineon Technologies, a surface micromachined pressure sensor array with on-chip circuitry for signal conditioning, A/D conversion, calibration and system diagnostic, which is based on a 0.8 μm BiCMOS technology on 6 in wafers.

A typical cross-section of a sub- μm (0.5–1.0 μm) CMOS technology used for CMOS-based microelectromechanical systems (MEMS) is shown in Fig. 1.2.