
- •Часть 1
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №2 Способы очистки веществ от примесей
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №3 Определение плотности металла
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №4 Установление формулы кристаллогидрата
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №5 Определение молекулярной массы углекислого газа
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №6 Определение эквивалентной и атомной массы металла
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №7 Комплексные соединения
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №7 Скорость химических реакций
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №9 Химическое равновесие
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №10 Приготовление растворов
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №11 Произведение растворимости
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №12 Ионнообменные реакции
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №13 Гидролиз солей
- •2. Теоретическая часть
- •3. Экспериментальная часть
- •Лабораторная работа №14 Окислительно-восстановительные реакции
- •2. Теоретическая часть
- •3. Экспериментальная часть
3. Экспериментальная часть
1. Взвесить пустой фарфоровый тигель с точностью до 0,01 г. Во взвешенный тигель насыпать 0,5–1 г медного купороса. Тигель с кристаллогидратом снова взвесить.
2. Поместить тигель в нагретую песочную баню на 20–30 минут.
3. Перенести щипцами тигель в эксикатор и охладить.
4. Взвесить охлажденный тигель.
5. Повторить прогревание тигля, снова охладить его в эксикаторе и взвесить. Если масса изменилась не более чем на 0,01 г, прогревание прекратить. По результатам последнего взвешивания заполнить таблицу результатов опыта:
Масса пустого тигля, г
|
Масса тиг-ля с кри-сталлогид-ратом, г
|
Масса кристалло-гидрата, г |
Масса тигля с веществом после про-каливания, г |
Масса безводной соли, г |
Масса воды, г |
|
|
|
|
|
|
6. Вычислить количество воды, приходящееся на один моль CuSO4, и записать формулу медного купороса, определенную опытным путем.
7. Определить относительную погрешность опыта, исходя из того, что реальная формула медного купороса CuSO4·5H2O.
8. Сделать вывод о проделанной работе.
Лабораторная работа №5 Определение молекулярной массы углекислого газа
1. Цель работы: определение молярной массы углекислого газа
2. Теоретическая часть
Одинаковые объемы газов, взятых при одной и той же температуре и давлении, содержат равное число молекул (закон Авогадро). Отсюда следует, что массы равных объемов двух газов относятся друг к другу, как их молекулярные или численно им равные молярные массы:
Где: m1 и m2 – массы газов;
M1 и M2 – молярные массы этих газов.
Отношение массы данного газа к массе того же объема другого газа, взятого при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Например, масса одноно литра диоксида углерода равна 1,98 г, а масса одного литра водорода при тех же условиях составляет 0,09 г, следовательно, плотность CO2 по водороду равна:
1,98 : 0,09 = 22
Обозначим относительную плотность газа буквой D. Тогда
откуда
М1
=
D·М2,
то есть молярная масса газа равна его плотности по отношению ко второму газу, умноженному на молярную массу второго газа.
Чаще всего плотность газов определяют по отношению к самому лёгкому газу – водороду. Молярная масса водорода равна 2 г/моль, поэтому уравнение для расчета молярных масс газов имеет вид
М = 2∙DH2
Нередко молярную массу газа вычисляют, исходя из его плотности по воздуху. Хотя воздух представляет собой смесь нескольких газов, известна его средняя молярная масса, равная 29 г/моль. В этом случае уравнение для расчета молярных масс газов имеет вид
М = 29∙Dвозд.
Молярную массу газа можно определить также через молярный объем, равный 22,4 л/моль. Для этого находят объем, занимаемый при нормальных условиях определенной массой газообразного вещества, а затем вычисляют массу 22,4 л этого вещества. Полученная величина является его молярной массой. Измерения объемов газов обычно проводят при условиях, отличающихся от нормальных. Для приведения объема газа к нормальным условиям (н.у.) используется уравнение Клапейрона:
где V – объем газа при давлении P и температуре T;
Vo – объем газа при нормальном давлении Po (101325 Па) и температуре To (273 К).
Молярную массу газа можно также вычислить по уравнению состояния идеального газа (уравнению Клапейрона–Менделеева)
,
где P – давление газа (Па); V – его объем (м3); m – масса (г); M – молярная масса (г/моль); T – температура (К); R = 8,31 Дж/(моль·К) – молярная газовая постоянная.