
- •Глава 1. Базовые понятия сетевых технологий.
- •1.1 Вводная часть
- •1.2 Телекоммуникационные вычислительные сети Общие понятия, терминология
- •Аппаратные и программные компоненты сети
- •1.3 Топологии локальных вычислительных сетей
- •Классификация информационно вычислительных сетей
- •1.3 Топологии локальных вычислительных сетей
- •Глава 1. Базовые понятия сетевых технологий.
- •Физическая топология сети передачи данных
- •«Общая шина»
- •Топология «звезда»
- •Топология «кольцо»
- •Полносвязная топология
- •Ячеистая топология
- •Топология «дерево»
- •Логическая топология сети передачи данных
- •Разделение сети на логические сегменты
- •Варианты создания vlan
- •Теги 802.1q
- •Сетевые устройства локальных сетей в топологии
- •Пример построения простой информационно вычислительной сети
- •Глава 2. Основы передачи данных
- •2.1 Основные определения
- •Параметры первичных сигналов
- •2.2 Линии и каналы связи
- •Проводные линии связи на основе металлических проводников
- •Кабельные линии связи
- •Воздушные линии связи
- •Волоконно-оптические линии связи
- •Радиолинии связи
- •2.3 Основные характеристики линий и каналов связи
- •Затухание линий связи
- •Полоса пропускания
- •Пропускная способность
- •Помехоустойчивость линии связи
- •Достоверность передачи данных
- •2.4 Особенности построения цифровых систем передачи (1/3) Магистральные линии связи (основные понятия)
- •Аналоговая модуляция
- •Методы модуляции аналогового сигнала
- •Дискретная модуляция аналоговых сигналов
- •2.4 Особенности построения цифровых систем передачи (2/3) Передача дискретных данных на канальном уровне
- •Протоколы с гибким форматом кадра
- •Цифровое кодирование
- •2.4 Особенности построения цифровых систем передачи (3/3) Логическое кодирование
- •Компрессия данных
- •Обеспечение достоверности передачи информации
- •2.5 Методы коммутации (1/3)
- •Коммутация каналов
- •2.5 Методы коммутации (2/3) Коммутация пакетов
- •2.5 Методы коммутации (3/3)
- •Коммутация сообщений
- •Глава 3. Модели сетевого взаимодействия
- •3.0. Модели сетевого взаимодействия
- •3.1 Модель osi
- •Уровни модели osi Физический
- •Канальный уровень
- •Сетевой уровень
- •Транспортный уровень
- •Сеансовый уровень
- •Представительный уровень
- •Прикладной уровень
- •3.2 Модель tcp/ip.
- •Соответствие уровней стека tcp/ip уровням модели osi Структура ip-пакета
- •Прикладной уровень
- •Основной уровень стека tcp/ip
- •Уровень межсетевого взаимодействия
- •Уровень сетевых интерфейсов
- •Единицы данных протоколов стека tcp/ip
- •3.3 Физические среды передачи данных информационно вычислительных сетей (1/2) Стандарты кабелей
- •Кабели на основе неэкранированной витой пары
- •Кабели на основе экранированной витой пары
- •Волоконно-оптические кабели
- •Многомодовое волокно со ступенчатым изменением показателя преломления
- •Многомодовое волокно с плавным изменением показателя преломления
- •Одномодовое волокно
- •Окна прозрачности оптоволокна
- •3.4 Организация локальной вычислительной сети (лвс) (1/2) Общие понятия
- •Структурированная кабельная система (скс)
- •Компоненты скс
- •Организация скс
- •Требования пожарной безопасности
- •Достоинства скс
- •Необходимость в диагностике скс
- •3.4 Организация локальной вычислительной сети (лвс) (2/2) Физическая структура лвс Типовая структура сети предприятия
- •Документирование структуры линий и каналов связи
- •Надежность сетевой инфраструктуры
- •3.5 Базовые технологии канального уровня вычислительных систем Структура стандартов Ethernet. Понятие мас адреса. (1/3) Структура стандартов Ethernet. Понятие мас-адреса
- •Форматы кадров технологии Ethernet
- •Методы доступа к среде передачи данных
- •Передача кадра Ethernet
- •.5 Базовые технологии канального уровня вычислительных систем Структура стандартов Ethernet. Понятие мас адреса (2/3) Технология Fast Ethernet Физический уровень Fast Ethernet
- •Автосогласование
- •Технология Gigabit Ethernet Физический уровень 1000Base-t -четырехпарная витая пара
- •Физический уровень 1000Base-х
- •Физический уровень 10 g Base- cx 4
- •Перспективные темы группы ieee 802.3
- •Беспроводные технологии
- •Основные направления деятельности ieee по темам беспроводной передачи данных
- •Технология WiMax
- •Технология3g
- •Технология hsdpa
- •Технология4g
- •3.6 Адресация (1/2) Типы адресов стека tcp/ip
- •Использование масок в ip-адресации.
- •3.6 Адресация (2/2)
- •3.7 Коммутаторы локальных сетей
- •3.8 Протоколы сетевого уровня (1/4)
- •Устройства сетевого уровня Маршрутизаторы
- •Корпоративные модульные коммутаторы
- •Протоколы arp и rarp
- •3.8 Протоколы сетевого уровня (2/4) Протоколы маршрутизации
- •Внутренние и внешние протоколы маршрутизации
- •Протокол rip
- •Протокол ospf
- •3.8 Протоколы сетевого уровня (3/4)
- •3.8 Протоколы сетевого уровня (4/4)
- •Понятие шлюза по умолчании.
- •3.9 Протоколы транспортного уровня
- •Протокол udp
- •Протокол tcp
- •3.10 Протоколы прикладного уровня. (1/2)
- •Система доменных имен dns
- •Протоколы Telnet , ssh
- •Протоколы ftp и tftp
- •3.10 Протоколы прикладного уровня. (2/2) Протоколы http и ssl
- •Протокол dhcp
- •3.11 Общие сведения о сетевых службах и ресурсах
- •Файловый сервис
- •Сервис печати
- •Сервис сообщений
- •Сервисприложений
- •Сервис баз данных
- •Тиражирование(репликация)
- •Современные тенденции развития информационно-вычислительных сетей
3.8 Протоколы сетевого уровня (2/4) Протоколы маршрутизации
Внутри сети доставка данных обеспечивается соответствующим канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня. Сети соединяются между собой специальными устройствами,называемыми маршрутизаторами.
Маршрутизатор - это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения.
Чтобы передать сообщение от отправителя, находящегося водной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями, или хопов (от hop - прыжок), каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет. На рис.110 показаны четыре сети, связанные тремя маршрутизаторами. Между узлами А и В данной сети пролегают два маршрута: первый через маршрутизаторы 1 и 3, а второй через маршрутизаторы 1, 2 и 3.
Рисунок 110 . Пример составной сети
Проблема выбора наилучшего пути называется маршрутизацией,и ее решение является одной из главных задач сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту;оно зависит от пропускной способности каналов связи и интенсивности трафика,которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например надежности передачи.
Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией или просто протоколами маршрутизации (routing protocols). С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.
Внутренние и внешние протоколы маршрутизации
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы - сети ARPANET. Для того чтобы понять их назначение и особенности, полезно сначала познакомиться со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.
Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems, AS).Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Необходимо подчеркнуть, что автономная система и домен имен Internet - это разные понятия, которые служат разным целям. Автономная система объединяет сети, в которых под общим административным руководством одной организации осуществляется маршрутизация, а домен объединяет компьютеры (возможно, принадлежащие разным сетям), в которых под общим административным руководством одной организации осуществляется назначение уникальных символьных имен. Естественно, области действия автономной системы и домена имен могут в частном случае совпадать, если одна организация выполняет обе указанные функции.
Маршрутизаторы/шлюзы, которые используются для образования сетей и подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways).Магистраль сети также является автономной системой. Все автономные системы имеют уникальный 16-разрядный номер, который выделяется организацией,учредившей новую автономную систему, InterNIC.
Соответственно протоколы маршрутизации внутри автономных систем называются протоколами внутренних шлюзов(interior gateway protocol, IGP),а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети - протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также допустим любой собственный внутренний протокол IGP.
Смысл разделения всей сети Internet на автономные системы -в ее многоуровневом модульном представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Изменение протоколов маршрутизации внутри какой-либо автономной системы никак не должно влиять на работу остальных автономных систем. Кроме того, деление Internet на автономные системы должно способствовать агрегированию информации в магистральных и внешних шлюзах.
Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации станет неприемлемо большим.
Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения - количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.
Техника бесклассовой маршрутизации CIDR может значительно сократить объемы маршрутной информации, передаваемой между автономными системами. Так, если все сети внутри некоторой автономной системы начинаются с общего префикса, например 194.27.0.0/16, то внешний шлюз этой автономной системы должен делать объявления только об этом адресе, не сообщая отдельно о существовании внутри данной автономной системы, например, сети 194.27.32.0/19или 194.27.40.0/21, так как эти адреса агрегируются в адрес 194.27.0.0/16.
Беcклассовая адресация ( англ . Classless Inter Domain Routing, англ . CIDR) - метод IP-адресации,позволяющий гибко управлять пространством IP-адресов, не используя жёсткие рамки классовой адресации. Использование этого метода позволяет экономно использовать ограниченный ресурс IP-адресов, поскольку возможно применение различных масок подсетей к различным подсетям.
EGP (сокр. от англ. Exterior Gateway Protocol, протокол внешнего шлюза) - устаревший протокол обмена информации между маршрутизаторами нескольких автономных систем. Разработан в82-84 годах. Впоследствии был заменён на BGP.
BGP (англ. Border Gateway Protocol, протокол граничного шлюза) - основной протокол динамической маршрутизации в Интернете. BGP, в отличие от других протоколов динамической маршрутизации,предназначен для обмена информацией о маршрутах не между отдельными маршрутизаторами,а между целыми автономными системами, и поэтому, помимо информации о маршрутах в сети, переносит также информацию о маршрутах на автономные системы.
BGP не использует технические метрики, а осуществляет выбор наилучшего маршрута исходя из правил, принятых в сети. BGP поддерживает бесклассовую адресацию и использует суммирование маршрутов для уменьшения таблиц маршрутизации.
BGP является протоколом прикладного уровня и функционирует поверх протокола транспортного уровня TCP (порт 179). BGP, наряду с DNS, является одним из главных механизмов, обеспечивающих функционирование Internet.
Приведенная выше структура Internet с единственной магистралью достаточно долго соответствовала действительности, поэтому специально для нее был разработан протокол обмена маршрутной информации между автономными системами, названный EGP. Однако по мере развития сетей поставщиков услуг структура Internet стала гораздо более сложной, с произвольным характером связей между автономными системами. Поэтому протокол EGP уступил место протоколу BGP, который позволяет распознать наличие петель между автономными системами и исключить их из межсистемных маршрутов. Протоколы EGP и BGP используются только во внешних шлюзах автономных систем, которые чаще всего организуются поставщиками услуг Internet. В маршрутизаторах корпоративных сетей работают внутренние протоколы маршрутизации, такие как RIP и OSPF.