
- •Глава 1. Базовые понятия сетевых технологий.
- •1.1 Вводная часть
- •1.2 Телекоммуникационные вычислительные сети Общие понятия, терминология
- •Аппаратные и программные компоненты сети
- •1.3 Топологии локальных вычислительных сетей
- •Классификация информационно вычислительных сетей
- •1.3 Топологии локальных вычислительных сетей
- •Глава 1. Базовые понятия сетевых технологий.
- •Физическая топология сети передачи данных
- •«Общая шина»
- •Топология «звезда»
- •Топология «кольцо»
- •Полносвязная топология
- •Ячеистая топология
- •Топология «дерево»
- •Логическая топология сети передачи данных
- •Разделение сети на логические сегменты
- •Варианты создания vlan
- •Теги 802.1q
- •Сетевые устройства локальных сетей в топологии
- •Пример построения простой информационно вычислительной сети
- •Глава 2. Основы передачи данных
- •2.1 Основные определения
- •Параметры первичных сигналов
- •2.2 Линии и каналы связи
- •Проводные линии связи на основе металлических проводников
- •Кабельные линии связи
- •Воздушные линии связи
- •Волоконно-оптические линии связи
- •Радиолинии связи
- •2.3 Основные характеристики линий и каналов связи
- •Затухание линий связи
- •Полоса пропускания
- •Пропускная способность
- •Помехоустойчивость линии связи
- •Достоверность передачи данных
- •2.4 Особенности построения цифровых систем передачи (1/3) Магистральные линии связи (основные понятия)
- •Аналоговая модуляция
- •Методы модуляции аналогового сигнала
- •Дискретная модуляция аналоговых сигналов
- •2.4 Особенности построения цифровых систем передачи (2/3) Передача дискретных данных на канальном уровне
- •Протоколы с гибким форматом кадра
- •Цифровое кодирование
- •2.4 Особенности построения цифровых систем передачи (3/3) Логическое кодирование
- •Компрессия данных
- •Обеспечение достоверности передачи информации
- •2.5 Методы коммутации (1/3)
- •Коммутация каналов
- •2.5 Методы коммутации (2/3) Коммутация пакетов
- •2.5 Методы коммутации (3/3)
- •Коммутация сообщений
- •Глава 3. Модели сетевого взаимодействия
- •3.0. Модели сетевого взаимодействия
- •3.1 Модель osi
- •Уровни модели osi Физический
- •Канальный уровень
- •Сетевой уровень
- •Транспортный уровень
- •Сеансовый уровень
- •Представительный уровень
- •Прикладной уровень
- •3.2 Модель tcp/ip.
- •Соответствие уровней стека tcp/ip уровням модели osi Структура ip-пакета
- •Прикладной уровень
- •Основной уровень стека tcp/ip
- •Уровень межсетевого взаимодействия
- •Уровень сетевых интерфейсов
- •Единицы данных протоколов стека tcp/ip
- •3.3 Физические среды передачи данных информационно вычислительных сетей (1/2) Стандарты кабелей
- •Кабели на основе неэкранированной витой пары
- •Кабели на основе экранированной витой пары
- •Волоконно-оптические кабели
- •Многомодовое волокно со ступенчатым изменением показателя преломления
- •Многомодовое волокно с плавным изменением показателя преломления
- •Одномодовое волокно
- •Окна прозрачности оптоволокна
- •3.4 Организация локальной вычислительной сети (лвс) (1/2) Общие понятия
- •Структурированная кабельная система (скс)
- •Компоненты скс
- •Организация скс
- •Требования пожарной безопасности
- •Достоинства скс
- •Необходимость в диагностике скс
- •3.4 Организация локальной вычислительной сети (лвс) (2/2) Физическая структура лвс Типовая структура сети предприятия
- •Документирование структуры линий и каналов связи
- •Надежность сетевой инфраструктуры
- •3.5 Базовые технологии канального уровня вычислительных систем Структура стандартов Ethernet. Понятие мас адреса. (1/3) Структура стандартов Ethernet. Понятие мас-адреса
- •Форматы кадров технологии Ethernet
- •Методы доступа к среде передачи данных
- •Передача кадра Ethernet
- •.5 Базовые технологии канального уровня вычислительных систем Структура стандартов Ethernet. Понятие мас адреса (2/3) Технология Fast Ethernet Физический уровень Fast Ethernet
- •Автосогласование
- •Технология Gigabit Ethernet Физический уровень 1000Base-t -четырехпарная витая пара
- •Физический уровень 1000Base-х
- •Физический уровень 10 g Base- cx 4
- •Перспективные темы группы ieee 802.3
- •Беспроводные технологии
- •Основные направления деятельности ieee по темам беспроводной передачи данных
- •Технология WiMax
- •Технология3g
- •Технология hsdpa
- •Технология4g
- •3.6 Адресация (1/2) Типы адресов стека tcp/ip
- •Использование масок в ip-адресации.
- •3.6 Адресация (2/2)
- •3.7 Коммутаторы локальных сетей
- •3.8 Протоколы сетевого уровня (1/4)
- •Устройства сетевого уровня Маршрутизаторы
- •Корпоративные модульные коммутаторы
- •Протоколы arp и rarp
- •3.8 Протоколы сетевого уровня (2/4) Протоколы маршрутизации
- •Внутренние и внешние протоколы маршрутизации
- •Протокол rip
- •Протокол ospf
- •3.8 Протоколы сетевого уровня (3/4)
- •3.8 Протоколы сетевого уровня (4/4)
- •Понятие шлюза по умолчании.
- •3.9 Протоколы транспортного уровня
- •Протокол udp
- •Протокол tcp
- •3.10 Протоколы прикладного уровня. (1/2)
- •Система доменных имен dns
- •Протоколы Telnet , ssh
- •Протоколы ftp и tftp
- •3.10 Протоколы прикладного уровня. (2/2) Протоколы http и ssl
- •Протокол dhcp
- •3.11 Общие сведения о сетевых службах и ресурсах
- •Файловый сервис
- •Сервис печати
- •Сервис сообщений
- •Сервисприложений
- •Сервис баз данных
- •Тиражирование(репликация)
- •Современные тенденции развития информационно-вычислительных сетей
2.2 Линии и каналы связи
Существующие типы линий связи в зависимости от используемой среды распространения сигналов принято делить на проводные и линии в атмосфере (радиолинии).
К линиям связи предъявляются следующие основные требования:
· осуществление связи на практически требуемые расстояния;
· широкополосность и пригодность для передачи различных видов сообщений;
· защищенность цепей от взаимных влияний и внешних помех, а также от физических воздействий (атмосферных явлений, коррозии и пр.);
· стабильность параметров линии, устойчивость и надежность связи;
· экономичность системы связи в целом.
Проводные линии связи на основе металлических проводников
В простейшем случае проводная линия связи -физическая цепь, образуемая парой металлических проводников.
К основным характеристикам линий связи относятся:
· амплитудно-частотная характеристика;
· полоса пропускания;
· затухание;
· помехоустойчивость;
· перекрестные наводки на ближнем конце линии;
· пропускная способность;
· достоверность передачи данных;
· удельная стоимость.
В первую очередь разработчиков вычислительной сети интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети. Пропускная способность и достоверность - это характеристики, как линии связи, так и способа передачи данных. Поэтому если способ передачи (протокол)уже определен, то известны и эти характеристики. Например, пропускная способность цифровой линии всегда известна, так как на ней определен протокол физического уровня, который задает битовую скорость передачи данных - 64Кбит/с, 2 Мбит/с и т. п.
Однако нельзя говорить о пропускной способности линии связи, до того как для нее определен протокол физического уровня.Именно в таких случаях, когда только предстоит определить, какой из множества существующих протоколов можно использовать на данной линии, очень важными являются остальные характеристики линии, такие как полоса пропускания,перекрестные наводки, помехоустойчивость и другие характеристики.
Кабельные линии связи
Кабельные линии связи (кабели связи) образованы проводами с изоляционными покрытиями, помещенными в защитные оболочки. По конструкции и взаимному расположению проводников различают симметричные и коаксиальные кабели связи.
Симметричная цепьсостоит из двух совершенно одинаковых в электрическом и конструктивном отношениях изолированных проводников. В зарубежных источниках симметричные кабели часто называют «витая пара» (TP - twisted pair). Различают экранированные (shielded) и неэкранированные (unshielded) симметричные кабели.
Коаксиальная цепьпредставляет собой два цилиндра с совмещенной осью, причем один цилиндр - сплошной внутренний проводник, концентрически расположен внутри другого, полого цилиндра (внешнего проводника). Проводники изолированы друг от друга диэлектрическим материалом.
Рассмотрим основные параметры кабелей с металлическими проводниками.
Коэффициент затухания a , дБ/км. Зависит от свойств материалов проводников и изоляционного материала. Наилучшими свойствами (малым сопротивлением) обладают медь и серебро. Коэффициент затухания зависит также от геометрических размеров проводников. Симметричный кабель с большими диаметрами проводников обладают меньшим коэффициентом затухания.
Очень важной характеристикой, фактически определяющей широкополосность системы связи, является зависимость коэффициента затухания от частоты. Если определен граничный коэффициент затухания a ГР (обычно он определяется возможностями усилителей или регенераторов), то данному коэффициенту соответствует граничная частота пропускания системы f ГР . Полоса пропускания системы не превышает граничной частоты пропускания.
Скорость распространения v, км/мс. С ростом частоты скорость распространения увеличивается, приближаясь к скорости света в вакууме v С » 300 км/мс. Данный параметр зависит также от свойств диэлектрика, применяемого в кабеле.
Волновое сопротивление (импеданс) Z В (Ом) -сопротивление, которое встречает электромагнитная волна при распространении вдоль однородной линии без отражения, т.е. при условии, что на процесс передачи не влияют несогласованности на концах линии. Волновое сопротивление симметричного кабеля зависит от удельных значений емкости и индуктивности кабеля. Диаметр жилы СК обычно составляет 0.4...1.2 мм. Коаксиальные СК обычно используются в диапазоне частот до 10 МГц.
Активное сопротивление - это сопротивление постоянному току в электрической цепи. В отличие от импеданса активное сопротивление не зависит от частоты и возрастает с увеличением длины кабеля.
Емкость - это свойство металлических проводников накапливать энергию. Два электрических проводника в кабеле,разделенные диэлектриком, представляют собой конденсатор, способный накапливать заряд. Емкость является нежелательной величиной, поэтому следует стремиться к тому, чтобы она была как можно меньше (иногда применяют термин «паразитная емкость»). Высокое значение емкости в кабеле приводит к искажению сигнала и ограничивает полосу пропускания линии.
Уровень внешнего электромагнитного излучения или электрический шум. Электрический шум - это нежелательное переменное напряжение в проводнике. Электрический шум бывает двух типов: фоновый и импульсный. Электрический шум можно также разделить на низко-,средне- и высокочастотный. Источниками фонового электрического шума в диапазоне до 150 кГц являются линии электропередачи, телефоны и лампы дневного света; в диапазоне от 150 кГц до 20 МГц - компьютеры, принтеры, ксероксы; в диапазоне от20 МГц до 1 ГГц - телевизионные и радиопередатчики, микроволновые печи.Основными источниками импульсного электрического шума являются моторы,переключатели и сварочные агрегаты. Электрический шум измеряется в милливольтах.
Помимо универсальных характеристик, таких,например, как затухание, которые применимы для всех типов кабелей, существуют характеристики, которые применимы только к определенному типу кабеля. Например,параметр шаг скрутки проводов используется только для характеристики витой пары, а параметр NEXT применим только к многопарным кабелям на основе витой пары.
В настоящее время проводные линии связи широко используются при построении локальных вычислительных сетей (подробнее тему ЛВС рассмотрим далее). Данные линии связи стандартизированы и обычно называются структурированной кабельной системой. Известны кабельные системы категорий 3, 4, 5 стандартов EIA/TIA-568, TSB-36, TSB-40 специального подкомитета TR41.8.1.
Базовыми стандартами структурированных кабельных систем являются: ANSI/TIA/EIA-568-B. Стандарт телекоммуникационных кабельных систем ком-мерческих зданий, 2001г; ISO/IEC 11801. Информационные технологии. Струк-турированная кабельная система для помещений заказчиков, 2002 год; EN 50173, Информационные технологии. Структурированные кабельные системы, 2008 года. В Российской Федерации с 01.01.2010 г. введены в действие ГОСТ Р 53246-2008 и ГОСТ Р 53245-2008, которые определяют общие требования к основным узлам СКС и методику испытания, соответственно.