
- •Санкт-Петербург
- •Содержание
- •Введение
- •Аннотация
- •1. Значение, общие принципы и методы технического анализа Основные понятия: технический контроль производств, технический анализ
- •Технический анализ – важнейшая составная часть технического контроля производств
- •Классификация методов технического анализа
- •Аналитический процесс Пробоотбор и пробоподготовка
- •Измерение и оценка результата Чувствительность аналитической методики
- •Случайная и систематическая погрешности
- •2. Гравиметрический (весовой анализ) Сущность гравиметрического анализа, его возможности и точность. Практическое значение метода
- •Разновидности гравиметрического анализа Форма осаждения и весовая форма
- •Требования, предъявляемые к форме осаждения и весовой форме
- •Контроль полноты осаждения
- •Образование осадков, их свойства, зависимость характера осадков от условий осаждения
- •Гравиметрическая форма.
- •Выбор осадителя; органические осадители.
- •Расчеты в гравиметрическом анализе; соотношение эквивалентности, аналитический фактор
- •Основные методы титриметрического анализа. Основные приемы титрования
- •Метод кислотно-основного титрования (нейтрализации)
- •Индикаторы в методе кислотно-основного титрования
- •Кривые титрования
- •Окислительно-восстановительное титрование (оксидиметрия), его разновидности
- •Титрование по методу осаждения. Комплексометрическое титрование
- •Выражение концентрации рабочих растворов. Расчеты в титриметрии
- •Термометрическое титрование.
- •Кондуктометрия. Кондуктометрическое титрование
- •Вольтамперометрия. Прямая полярография. Амперометрическое титрование
- •Контрольные вопросы к главе 1.3.
- •1.4. Спектральные и оптические методы анализа
- •Оптические спектры
- •Величины светопоглощения
- •Спектр поглощения
- •Выбор длины волны и светофильтра
- •Чувствительность фотоколориметрических и спектрофотометрических методов
- •Основные приемы фотометрического анализа
- •Приборы фотометрического анализа Для количественной оценки интенсивности окраски или светопоглощения применяют различные приборы:
- •Электронные спектры поглощения органических соединений
- •Типы электронных переходов
- •Инфракрасная спектроскопия
- •Устройство ик - спектрометра
- •Ядерный магнитный резонанс
- •Химический сдвиг
- •Спин-спиновое взаимодействие
- •Контрольные вопросы к теме 1.4
- •1.5. Хроматографический анализ и хромато-масс-спектрометрия хроматографические методы анализа
- •Области применения хроматографии
- •Молекулярная адсорбционная хроматография жидких веществ
- •Адсорбенты
- •Растворители
- •I. По механизму разделения
- •II. По форме проведения процесса
- •Газовая хроматография
- •Хромато-масс-спектрометрия
- •Контрольные вопросы к теме 1.5.
- •Заключение
- •Список литературы к разделу 1.1.-1.3.
- •Список литературы к разделу 1.4.-1.5.
- •Терминологический словарь к разделу 1
II. По форме проведения процесса
1. Колоночная.
2. Капиллярная.
3. Плоскостная (ТХС, на бумаге).
Таким образом: хроматографическим методом называется физико-химический метод разделения смесей, при котором компоненты разделяемой смеси распределены между двумя фазами, одной из которых является неподвижный слой с большой поверхностью контакта, а другая фаза представляет собой поток, фильтрующийся через неподвижный слой.
Характерной особенностью хроматографических методов анализа является многократность повторения процесса сорбции и десорбции. Это обусловливает высокую эффективность метода.
Газовая хроматография
Газовая хроматография – когда анализируемая смесь находится в газообразном состоянии.
В зависимости от характера сорбции различают две разновидности газовой хроматографии;
1. Газо-адсорбционная, когда сорбентом служит твердое вещество.
2. Газо-абсорбционная (газо-жидкостная) хроматография (ГЖХ) заключается в разделении компонентов газовой смеси между газообразной и жидкой фазами. Причем последняя является неподвижной.
Жидкая фаза в ГЖХ наносится на твердый инертный носитель, задача которого состоит в локализации жидкости в пространстве и в таком состоянии, при котором обеспечивается лучшая массопередача.
Отношение концентрации анализируемого вещества в жидкой неподвижной фазе к его концентрации в газовой фазе играет первостепенную роль в распределении смеси веществ. Это отношение называется коэффициентом распределения (или коэффициентом Генри).
Если линейная скорость газа – носителя по колонке W, см/сек, то эффективная скорость перемещения вещества по колонке выразится как:
Wэфф
=
,
см/с.
Поэтому, если проба есть смесь нескольких веществ и для данной неподвижной фазы коэффициенты Генри различны для этих веществ, то вещества будут двигаться по колонке с различными скоростями. При достаточной длине колонки это приведет к их полному разделению. В случае, если коэффициенты Генри для компонентов смеси незначительно различаются, разделения можно достигнуть, увеличив в длину колонки или применив более селективную неподвижную фазу.
В ГЖХ неподвижный фазой является чаще всего малолетучая органическая жидкость, наносимая на твердый инертный носитель с достаточно большой поверхностью. Количество неподвижной фазы колеблется от 1 до 30% (чаще 10%). Одним из основных требований к неподвижной фазе является ее полная химическая инертность по отношению к компонентам разделяемой смеси и твердому носителю. Другие требования – малая вязкость, малая летучесть, высокая селективность. Некоторые представители жидкой фазы: вазелиновое масло (смесь жидких парафинов), октадекан, апиезон (вакуумная смазка), авиационное масло, фталаты и др.
В качестве твердых инертных носителей применяются природные диамониты, диамонитовые кирпичи, крупнопористое стекло, а также некоторые полимерные вещества. Кроме того, носитель не должен обладать каталитической активностью.
Хроматограмма (выходящая кривая) представляет собой график появления примесей вещества в газе-носителе, выходящем из колонки, в зависимости от объема газа-носителя, пропущенного через колонку с момента ввода пробы. Хроматограмма описывается уравнением:
Cвых = С0 f(, V),
где Свых – концентрация вещества в газе-носителе на выходе из колонки;
С0 – концентрация вещества в газе-носителе на входе в момент пуска пробы;
V – объем газа-носителя.
Из анализа уравнения выходной кривой следует, что для появления на выходе из колонки максимальной концентрации вещества в газе – носителе через нее необходимо пропустить строго определенный объем газа-носителя, равный:
vR = L S,
где L – длина колонки;
S – сечение сорбента.
Этот объем является качественной характеристикой вещества и называется удерживаемым объемом. Так как скорость газа 0 носителя постоянна, то удерживаемый объем пропорционален времени. Время, через которое с момента выпуска пробы на выходе из колонки появляется максимальная концентрация вещества в газе-носителе, называется временем удерживания. Тогда:
vR = V R,
где R – время удерживания;
V – объемная скорость газа-носителя, приведенная к нормальным условиям.
На практике часто пользуются относительным удерживаемым объемом vотн:
vотн
=
,
где vRст – удерживаемый объем некоторого вещества, принятого на стандарт.
Относительный удерживаемый объем зависит только от природы сорбента и температуры. Значения vотн многих веществ приводятся в литературе. Если учесть, что параметры колонки не влияют на величину vотн, и что скорость диаграмной ленты постоянна, то:
vотн
=
,
где: l и lст – расстояния на диаграммой ленте от момента впуска пробы до максимумов пиков исследуемого вещества и стандарта соответственно.
Из уравнения выходной кривой также следует, что площадь, ограниченная пиком, пропорциональна абсолютному количеству вещества, прошедшего через колонку (в граммах или молях). Коэффициент пропорциональности определяется чувствительностью детектора к данному конкретному веществу и называется калибровочным коэффициентом. Если известны калибровочные коэффициенты для всех компонентов смеси, то процентное содержание i-го компонента в смеси из j компонентов определяется:
%
i-го
компонента =
.
Калибровку проводят относительно одного из компонентов смеси, приняв для него К = 1,0. Для этого снимают хроматограммы бинарных смесей вещества, принятого за стандарт, и вещества, для которого измеряют К. Причем для такой бинарной смеси должно быть известно весовое соотношение компонентов. Калибровочный коэффициент рассчитывают по формуле:
,
где g – навески.
Площадь пика равна половине произведения высоты пика (от нулевой линии) на его основание:
S = 1/2 H b,
где b – основание
либо S = H b0,5,
где b0,5 – ширина пика на половине высоты.