
- •1.У чому полягає принцип побудови температурних шкал, назвати їх основні види?
- •2. Фізичні основи, конструкція і область застосування вихрострумових товщиномірів покриття металів.
- •3. Способи контакту уз перетворювачів з поверхнею виробу.
- •4. Рентгенівські трубки, їх характеристики, класифікація, основні конструкції, типи. Оптична система рентгенівських трубок, її розрахунок.
- •5. Розрахувати і побудувати афх, ачх і фчх для ланки обробки сигналів по їх передавальній функції:
- •Здійснити порівняльну оцінку різних типів термометрів розширення.
- •9.2. Термометри розширення
- •9.2.1. Рідинні термометри
- •9.2.2. Дилатометричні та біметалеві термометри.
- •9.2.3. Манометричні термометри.
- •2. Фізичні основи, конструкція і область застосування вихрострумових структуроскопів.
- •3. Амплітудно-частотна характеристика уз перетворювачів і її параметри.
- •4. Тепловий захист рентгенівських трубок, його розрахунок.
- •1.Описати принцип роботи та назвати основні види пірометрів.
- •2.9.1 Яскравісні пірометри
- •2.9.2 Кольорові пірометри
- •2.9.3 Радіаційні пірометри
- •2.Фізичні основи, конструкція і область застосування вихрострумових дефектоскопів з мікропроцесорами і мікроЕом
- •3.Коефіцієнти електромеханічного перетворення.
- •4.Промислові рентгенівські товщиноміри. Рентгеноструктурний та спектральний аналіз в промисловій дефектоскопії
- •5.Розрахувати і побудувати автокореляційну функцію для такого аналітичного заданого періодичного інформаційного сигналу:
- •1.Описати основні види рідинних манометрів.
- •2.Фізичні основи, конструкція і область застосування електроємнісного методу контролю.
- •3.Основні типи п’єзоперетворювачів для уз апаратури.
- •4.Фізичні основи контролю проникаючими речовинами. Матеріали для проведення контролю проникаючими речовинами.
- •5.Розрахувати і побудувати автоковаріаційну функцію для такого аналітичного заданого періодичного інформаційного сигналу:
- •1.Здійснити порівняльну оцінку звужуючих пристроїв у витратомірах змінного перепаду тиску.
- •10.3 Витратоміри змінного перепаду тиску (дросельні)
- •10.3.1 Теоретичні основи
- •10.3.2 Звужуючі пристрої у витратомірах змінного перепаду тиску
- •2.Фізичні основи, конструкція і область застосування електропотенційних і термоелектричних дефектоскопів.
- •14 Електропотенціальний метод контролю і його технічна реалізація
- •11.5 Термоелектричний метод контролю і його технічна реалізація
- •3.Способи визначення товщини безеталонним методом.
- •4.Апаратура для проведення неруйнівного контролю з використанням проникаючих речовин. Методика проведення контролю якості виробів з використанням проникаючих речовин.
- •5.Розрахувати і побудувати автокореляційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Здійснити порівняльну оцінку основних типів лічильників об’ємного методу.
- •Засоби вимірювання витрати називають витратомірами.
- •10.1 Об’ємні методи вимірювання витрати
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів зовнішніми прохідними вихрострумовими перетворювачами (всп).
- •3.Конструкція п’єзоперетворювача і призначення основних його елементів.
- •4.Фізичні основи неруйнуючого контролю електромагнітними випромі-нюваннями.Характеристики електромагнітних випромінювань. Взаємодія електромаг-нітного випромінювання з речовиною.
- •5.Розрахувати і побудувати автоковаріаційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1.Здійснити порівняльну оцінку буйкових та поплавкових рівнемірів.
- •11.2 Поплавкові рівнеміри
- •11.3 Буйкові рівнеміри
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів внутрішніми прохідними всп.
- •3.Коефіцієнти відбиття і поглинання, їх взаємозв’язок.
- •4.Джерела електромагнітного випромінювання для оптичного та теплового контролю. Елементи оптичних систем.
- •5.Розрахувати і побудувати взаємну кореляційну функцію для таких сигналів
- •1.На якій основній властивості певного параметру, яким характеризується досліджувана суміш, базується вимірювання концентрації. Навести приклади аналізаторів різних типів.
- •15.1 Термокондуктометричні газоаналізатори
- •15.2. Дифузійні газоаналізатори
- •15.3. Магнітні газоаналізатори
- •15.4 Потенціометричні аналізатори
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів екранними прохідними всп
- •3.Застосування поперечних хвиль і їхня фізична суть.
- •4.Первинні перетворювачі оптичного випромінювання. Їхні характеристики, класифікація, принцип дії.
- •5.Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1.Описати суть методів вимірювання октанового числа та температури сплаху нафтопродуктів
- •17.3 Засоби вимірювання октанового числа
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів накладними всп.
- •3.Фізична суть повздовжніх хвиль і їх застосування.
- •4.Візуальний та візуально-оптичний контроль якості виробів, напівфабрикатів та матеріалів.
- •5.Розрахувати акф по такій відомій спектральній щільності сигналу:
- •1.Розмірності основних фізичних величин.
- •2.Фізичні основи, конструкція і особливості контролю дефектів виробів вихрострумовим методом контролю.
- •3.Фізична суть поверхневих хвиль і хвиль Релея і їх застосування.
- •4.Фотометричні методи контролю якості.
- •5.Розрахувати спектральну щільність сигналу по такій відомій його акф:
- •1. Міжнародна система одиниць фізичних величин.
- •2. Фізичні основи, конструкція і особливості контролю рухомих об’єктів вихрострумовим методом контролю. Вплив швидкості руху всп відносно об’єкта контролю
- •3. Співвідношення між швидкостями повздовжніх, поперечних і поверхневих хвиль.Ю їх застосування.
- •4. Голографія. Голографічні методи неруйнівного контролю.
- •5. Розрахувати спектральну щільність такого детермінованого сигналу:
- •1. Різновидності похибок засобів вимірювання і похибок результатів вимірювань.
- •2. Класифікація і область застосування магнітних методів неруйнівного контролю. Основні поняття і терміни при магнітному контролі.
- •Основні поняття і терміни при магнітному контролі
- •3. Застосування зразків 1,2,3 для градуйовки дефектоскопа
- •4. Апаратура і методи телевізійного контролю. Ендоскопи.
- •5. Розрахувати спектральну щільність сигналу по такій відомій його акф:
- •1. Поняття інтегральної і диференційної функції розподілу результатів спостережень і випадкових похибок.
- •2. Поняття магнітної проникності, її види і особливості використання при магнітних методах контролю. Коефіцієнт розмагнічення і його фізична суть.
- •3 Блок-схема товщиноміра ут-93п і його застосування.
- •4. Інтерференційні методи неруйнуючого контролю виробів.
- •5. Розрахувати акф по такій відомій спектральній щільності сигналу:
- •1. Нормальний і нормалізований закони розподілу результатів спостережень і випадкових похибок.
- •2.Індукційні магнітні перетворювачі (елементи теорії, класифікація, основи конструювання). Магнітна індукційна головка.
- •3. Блок-схема дефектоскопа уд-12 і його застосування.
- •4. Нефелометричні та поляриметричні методи контролю речовини.
- •5.Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1. Обробка результатів багатократних посередніх вимірювань при лінійній залежності між вимірювальним аргументом і вимірювальною величиною
- •2. Ферозондові перетворювачі. Типи ферозондів. Суть контролю по парній гармоніці.
- •3. Поняття мертвої зони і залежність параметрів п’єзоперетворювачів від їх фізичних розмірів на базі циліндричного перетворювача.
- •4. Оптичні методи контролю геометричних розмірів.
- •Лазер; 2- дзеркало дефлектора; 3- об’єктив1; 4- ок; 5- об’єктив2; 6- фотоелемент.
- •Лазер; 2- еталонне дзеркало; 3- ок; 4- напівпрозоре дзеркало;
- •5. Розрахувати і побудувати взаємну кореляційну функцію для таких сигналів:
- •1. Обробка результатів багатократних посередніх вимірювань при нелінійній залежності між вимірювальним аргументом і вимірювальною величиною
- •2.Ферозондова установка уфст-61.
- •3. Поняття першого, другого і третього критичних кутів
- •4. Фізичні основи теплового неруйнуючого контролю. Основні закони теплового випромінювання та теплопередача. Використання їх для розробки методів теплового контролю.
- •5. Розрахувати і побудувати авковаріаційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Обробка результатів прямих вимірювань з однократними спостереженнями аргументів
- •2 Перетворювачі Холла. Чутливість, градуювальна характеристика.
- •3. Закон Снеліуса і його застосування
- •4. Первинні перетворювачі теплових величин. Індикатори теплових полів. Пристрої, використовувані в тепловому контролі.
- •5. Розрахувати і побудувати автокореляційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Посередні вимірювання з однократними спостереженнями аргументів
- •2. Магнітний дефектоскоп стальних канатів интрос і дип-2.
- •3. Вибір і обґрунтування частот перетворювача для контролю параметрів металу, бетону, пластмаси
- •2.3. Властивості ультразвукових коливань
- •4. Апаратура безконтактного контролю температури. Класифікація, будова та обґрунтування принципу дії.
- •5. Розрахувати і побудувати автоковаріаційну функцію для такого аналітично заданого періодичного інформаційного сигналу:
- •1. Диференціальний метод розрахунку похибок засобів вимірювання
- •В ідносна похибка буде такою:
- •2. Магнітні товщиноміри(типи, загальна характеристика). Магнітний товщиномір мт-41нц.
- •9.1 Фізичні основи магнітної товщинометрії
- •9.4 Індукційні товщиноміри
- •5. Розрахувати і побудувати автокореляційну функцію для такого аналітичного заданого періодичного інформаційного сигналу:
- •1. Розрахунок похибок засобів вимірювань на основі їх структурних схем.
- •2. Електропотенціальні дефектоскопи. Глибиномір тріщин типу хrt804
- •3. Схеми прозвучування таврових з‘єднань і їх особливості
- •4. Тепловізійна апаратура. Будова, принцип дії та характеристики.
- •1. Динамічні похибки засобів вимірювання і методика їх визначення.
- •2. Термоелектричний метод контролю і його технічна реалізація. Дефектоскопи типу іскра-1м
- •Електроіскровий метод контролю і його технічна реалізація
- •3. Контроль швів в нахлестку та їх особливості.
- •4. Організація теплового контролю. Дефектоскопія та інтроскопія тепловими методами.
- •1 Загальний аналіз методів підвищення точності засобів вимірювання.
- •2. Класифікація і види вихрострумових перетворювачів (всп) область їх застосування.
- •3 Схема контролю стикових з‘єднань та їх особливості
- •Джерела нвч коливань
- •2. Вихрострумовий дефектоскоп вд-26н.
- •4 Основні пристрої для формування і обробки надвисокочастотних радіосигналів і електромагнітних полів. Індикатори та перетворювачі радіохвильового випромінювання.
- •1. Автоматичне коригування похибок методом ітерацій
- •2. Фізичні основи електромагнітного контролю. Основні розрахункові сигнали всп і параметри електромагнітного контролю.
- •Очевидно, що
- •3 Визначення конфігурації та орієнтації дефектів. Визначення координат дефекту
- •4 Будова апаратури радіохвильового неруйнуючого контролю. Геометричний метод радіохвильового контролю.
- •Геометричний метод рхнк
- •5.Розрахувати і побудувати авковаріаційну функцію для такого аналітично заданого періодичного інформаційного сигналу:
- •1. Показники безвідказності електровимірювальних приладів. Показники надійності
- •2 Оптимізація умов контролю циліндричних виробів прохідними всп.
- •3. Види шумів і шумозахищеність при тіньовому і дзеркально-тіньовому методах
- •4 Методи радіохвильового неруйнуючого контролю для визначення фізичних параметрів об'єктів контролю. Вимірювання товщини листа методом пройшовшого радіовипромінення
- •5. Розрахувати і побудувати автокореляційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Показники довговічності, ремонто-придатності і зберігання приладів
- •2 Вихрострумовий вимірювач типу итм-11.
- •3. Основні параметри ультразвукового контролю зварних з’єднань
- •4. Дефектоскопія радіохвильовим методом. Основні принципи дії та будова радіохвильових дефектоскопів, особливості їхнього застосування.
- •5 Розрахувати і побудувати автоковаріаційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Яка різниця у будові та принципу дії цифрових фазометрів і частотомірів?
- •3 Фізична суть ехо-імпульсного методу і його застосування.
- •Роль і місце методів контролю проникаючими випромінюваннями та речовинами. Фізичні основи контролю іонізуючими випромінюваннями. Взаємодія іонізуючих випромінювань з речовиною.
- •1. Яка різниця у будові та принципу дії цифрових вимірювальних приладів часового перетворення розгортаючої та інтегруючої дії? Цифрові вольтметри розгортаючого часового перетворення
- •6.3.2 Інтегруючі цифрові вольтметри часового перетворення
- •2 Фізичні основи, конструкції і область застосування перетворювачів Холла.
- •3 Фізична суть тіньового методу і його застосування.
- •4. Радіоізотопні джерела іонізуючого випромінювання та джерела на основі прискорювачів заряджених частинок.
- •5. Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1 Яка різниця у будові та принципу дії цифрових вимірювальних приладів розгортаючого зрівноважування одиничного та порядкового наближення? Цифрові вольтметри зрівноважуючого перетворення
- •2 Фізичні основи, конструкції і область застосування індукційних перетворювачів.
- •3 Фізична суть дзеркально-тіньового методу і його застосування.
- •4 Детектори іонізуючого випромінювання, їхні типи та застосування, використання підсилюючих екранів.
- •1. Здійснити порівняльну характеристику аналогових електромеханічних приладів магнітоелектричної і електромагнітної систем. Магнітоелектричні вимірювальні прилади
- •2. Фізичні основи, конструкції і область застосування магніторезистивних перетворювачів.
- •4 Характеристики методів промислової радіографії. Вибір та обґрунтування режимів просвічування в радіографії.
- •Геометрична нерізкість визначається з співвідношення
- •1 Здійснити порівняльну характеристику аналогових електромеханічних приладів електростатичної і електродинамічної систем.
- •2 Фізичні основи, конструкції і область застосування магнітопорошкових дефектоскопів.
- •3 Фізична суть імпедансного методу і його застосування.
- •4. Засоби техніки ізотопної радіографії. Основні типи гамма-дефектоскопів.
- •5.4 Потенціометри змінного струму
- •3 Фізична суть акустичної емісії і її застосування.
- •4. Фізичні основи радіометрії. Методи та засоби радіометрії. Методики та схеми радіометричної дефектоскопії. Радіометричні гамма-дефектоскопи.
- •7.1 Світлопроменеві осцилографи (спо)
- •7.2 Електронно-променеві осцилографи (епо).
- •2. Фізичні основи, конструкція і область застосування індукційних дефектоскопів. Індукційні магнітні дефектоскопи
- •4.1 Пасивні індукційні перетворювачі
- •4.2 Магнітна індукційна головка
- •3 Методи визначення швидкості поширення уз коливань.
- •4. Радіоскопія, область застосування. Технічні засоби радіоскопії. Методика і техніка радіоскопічного контролю.
- •1. Здійснити порівняльну характеристику пікнометричних і п’єзометричних густиномірів. Вагові (пікнометричні) густиноміри
- •2 Фізичні основи, конструкція і область застосування магнітних товщиномірів пондеромоторної дії та магнітостатичних товщиномірів. Магнітні товщиноміри
- •9.1 Фізичні основи магнітної товщинометрії
- •9.2 Товщиноміри пондеромоторної дії
- •9.3 Магнітостатичні товщиноміри
- •3. Способи зондування виробів за допомогою уз.
- •5. Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1. Здійснити порівняльну характеристику ротаційних та капілярних віскозиметрів. Вимірювання в'язкості рідин
- •13.1 Капілярні віскозиметри.
- •13.3. Ротаційні візкозиметри
- •2 Фізичні основи, конструкція і область застосування магнітних структуроскопів. Магнітні структуроскопи
- •10.1 Фізичні основи магнітної структуроскопії
- •10.2 Коерцитиметри
- •3. Конструкція уз перетворювачів.
- •4. Фізичні основи рентгенівської дефектоскопії. Засоби і техніка рентгенографії, їх класифікація , області застосування.
- •5. Розрахувати і побудувати взаємну кореляційну функцію для таких сигналів:
2. Термоелектричний метод контролю і його технічна реалізація. Дефектоскопи типу іскра-1м
Термоелектричний метод контролю базується на реєстрації термоЕРС, що виникає при контакті різнорідних провідників, один із яких – об’єкт контролю.
З курсу фізики відомо, що при контакті провідників різного хімічного складу в тонкому контактному шарі виникає електрорушійна сила, яка часто називається контактною. Якщо з різнорідних провідників скласти замкнутий контур, то струм у ньому визначається сумою контактних ЕРС. У контурі алгебраїчна сума контактних ЕРС дорівнює нулю, якщо усі ділянки контуру мають однакову температуру. Отже, у такому ланцюзі при відсутності ЕРС іншого походження (сторонніх, індукційних, тощо) струм відсутній. Якщо ж контакти різнорідних провідників мають різну температуру, то виникаюча в ланцюзі ЕРС (термоелектрична ЕРС), створює струм. Це явище називають термоелектричним ефектом або ефектом Зеебека. ТермоЕРС визначається формулою:
Et=α(tГ-tХ),
де α - коефіцієнт термоЕРС, що залежить від хімічного складу пари провідників, що контактують; tг - температура нагрітого (“гарячого”) контакту; tх — температура не нагрітого (“холодного”) контакту.
Якщо в якості одного з електродів пари використовувати металевий об'єкт, а гарячі і холодний електроди при цьому виготовити з відомого металу, то, знаючи різницю температур (tГ-tХ) і вимірюючи термоЕРС Ег, можна визначити α і, отже, ідентифікувати матеріал об'єкта контролю. В цьому полягає суть використання термоелектричного ефекту для сортування металів і сплавів згідно марок (хімічного складу).
При контролі термоелектричним методом застосовують дві основні схеми: абсолютну і диференціальну. Гарячий електрод (переважно мідний) нагрівається змінним струмом підігрівача і розташовується у термоізольованому корпусі. У цьому ж корпусі знаходиться давач температури (терморезистор), за допомогою якого регулюється струм підігрівника так, щоб різниця температур гарячого і холодного електродів була постійною. При використанні абсолютної схеми (рис. 11.4,а) вимірюється абсолютне значення термоЕРС Еt і по ньому за допомогою довідкових таблиць, визначається марка матеріалу об'єкта контролю. Диференціальна схема (рис. 11.4,б) дозволяє порівнювати об'єкт контролю 1 із контрольним зразком 2, який виготовлений із заданого матеріалу. При цьому вимірюється різниця ΔEt ( термоЕРС пар електрод — ОК і електрод — контрольний зразок. При співпадінні хімічного складу матеріалів ОК і контрольного зразка ΔEt=0. Склавши у процесі попередніх експериментів на контрольних зразках таблицю залежності ΔEt від наявності тої чи іншої домішки в сплаві, можна сортувати ОК по наявності цієї домішки.
Рисунок 11.4 – Схеми термоелектричного методу контролю з застосуванням абсолютного (а) та диференціального (б) способів вимірювань.
Очевидно, що термоелектричні прилади можна застосовувати тільки для контролю металевих об'єктів, що не мають ізоляційних покрить (лакових, емалевих тощо).
Електроіскровий метод контролю і його технічна реалізація
Електроіскровий метод контролю базується на реєстрації електричного пробою на ділянці поверхні об'єкта контролю. Він використовується для виявлення порушень суцільності діелектричних захисних покрить на об'єктах, що проводять струм, а також для знаходження тріщин у діелектричних об'єктах. У першому випадку висока змінна, імпульсна або постійна напруга прикладається між підставкою, яка електропровідна, і спеціальним електродом на покритті, а у другому - між двома електродами, розташованими з протилежних боків діелектричного ОК. Якщо в діелектрику, до якого прикладена напруга, є газові бульбашки, пори, тріщини, то в цьому місці виникає іскровий пробій, тобто стрибкоподібне збільшення електричної провідності.
Електроіскрові дефектоскопи містять джерело регульованої високої напруги, електронний блок, набір електродів і допоміжних пристроїв. Електронний блок служить для регулювання і індикації випробувальної напруги, обчислення кількості пробоїв, світлової і звукової сигналізації про пробій. Він містить електронні пристрої блокування випробувальної напруги при коротких замиканнях електродів на підставу ОК або у випадку торкання електродів оператором, чим забезпечується безпека роботи. Виникнення іскрового пробою реєструється електронними пристроями дефектоскопа по зміні електричного режиму кола, у якому відбувається пробій (зміна струму і напруги).
Випускаються стаціонарні дефектоскопічні установки неперервного технологічного контролю, які дозволяють контролювати якість ізоляційних покрить труб, діелектричних покрить на металевих стрічках, листах.
Напруга між електродами залежить від товщини випробовуваного діелектричного шару і коливається в межах 0,5-35 кВ, а в окремих випадках досягає 70 кВ. Дефектоскопи можуть вмикатися в мережу, або комплектуються автономним живленням. Електроіскрові дефектоскопи широко використовуються для контролю якості діелектричних покрить товщиною до 10 мм із полімерних матеріалів, епоксидних смол, скла, емалі, бітуму, лаків і фарб. В багатьох випадках вони дозволяють виявляти пори, тріщини, подряпини та інші дефекти, коли інші методи і засоби неруйнівного контролю практично не можуть бути застосовані.