
- •1.У чому полягає принцип побудови температурних шкал, назвати їх основні види?
- •2. Фізичні основи, конструкція і область застосування вихрострумових товщиномірів покриття металів.
- •3. Способи контакту уз перетворювачів з поверхнею виробу.
- •4. Рентгенівські трубки, їх характеристики, класифікація, основні конструкції, типи. Оптична система рентгенівських трубок, її розрахунок.
- •5. Розрахувати і побудувати афх, ачх і фчх для ланки обробки сигналів по їх передавальній функції:
- •Здійснити порівняльну оцінку різних типів термометрів розширення.
- •9.2. Термометри розширення
- •9.2.1. Рідинні термометри
- •9.2.2. Дилатометричні та біметалеві термометри.
- •9.2.3. Манометричні термометри.
- •2. Фізичні основи, конструкція і область застосування вихрострумових структуроскопів.
- •3. Амплітудно-частотна характеристика уз перетворювачів і її параметри.
- •4. Тепловий захист рентгенівських трубок, його розрахунок.
- •1.Описати принцип роботи та назвати основні види пірометрів.
- •2.9.1 Яскравісні пірометри
- •2.9.2 Кольорові пірометри
- •2.9.3 Радіаційні пірометри
- •2.Фізичні основи, конструкція і область застосування вихрострумових дефектоскопів з мікропроцесорами і мікроЕом
- •3.Коефіцієнти електромеханічного перетворення.
- •4.Промислові рентгенівські товщиноміри. Рентгеноструктурний та спектральний аналіз в промисловій дефектоскопії
- •5.Розрахувати і побудувати автокореляційну функцію для такого аналітичного заданого періодичного інформаційного сигналу:
- •1.Описати основні види рідинних манометрів.
- •2.Фізичні основи, конструкція і область застосування електроємнісного методу контролю.
- •3.Основні типи п’єзоперетворювачів для уз апаратури.
- •4.Фізичні основи контролю проникаючими речовинами. Матеріали для проведення контролю проникаючими речовинами.
- •5.Розрахувати і побудувати автоковаріаційну функцію для такого аналітичного заданого періодичного інформаційного сигналу:
- •1.Здійснити порівняльну оцінку звужуючих пристроїв у витратомірах змінного перепаду тиску.
- •10.3 Витратоміри змінного перепаду тиску (дросельні)
- •10.3.1 Теоретичні основи
- •10.3.2 Звужуючі пристрої у витратомірах змінного перепаду тиску
- •2.Фізичні основи, конструкція і область застосування електропотенційних і термоелектричних дефектоскопів.
- •14 Електропотенціальний метод контролю і його технічна реалізація
- •11.5 Термоелектричний метод контролю і його технічна реалізація
- •3.Способи визначення товщини безеталонним методом.
- •4.Апаратура для проведення неруйнівного контролю з використанням проникаючих речовин. Методика проведення контролю якості виробів з використанням проникаючих речовин.
- •5.Розрахувати і побудувати автокореляційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Здійснити порівняльну оцінку основних типів лічильників об’ємного методу.
- •Засоби вимірювання витрати називають витратомірами.
- •10.1 Об’ємні методи вимірювання витрати
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів зовнішніми прохідними вихрострумовими перетворювачами (всп).
- •3.Конструкція п’єзоперетворювача і призначення основних його елементів.
- •4.Фізичні основи неруйнуючого контролю електромагнітними випромі-нюваннями.Характеристики електромагнітних випромінювань. Взаємодія електромаг-нітного випромінювання з речовиною.
- •5.Розрахувати і побудувати автоковаріаційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1.Здійснити порівняльну оцінку буйкових та поплавкових рівнемірів.
- •11.2 Поплавкові рівнеміри
- •11.3 Буйкові рівнеміри
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів внутрішніми прохідними всп.
- •3.Коефіцієнти відбиття і поглинання, їх взаємозв’язок.
- •4.Джерела електромагнітного випромінювання для оптичного та теплового контролю. Елементи оптичних систем.
- •5.Розрахувати і побудувати взаємну кореляційну функцію для таких сигналів
- •1.На якій основній властивості певного параметру, яким характеризується досліджувана суміш, базується вимірювання концентрації. Навести приклади аналізаторів різних типів.
- •15.1 Термокондуктометричні газоаналізатори
- •15.2. Дифузійні газоаналізатори
- •15.3. Магнітні газоаналізатори
- •15.4 Потенціометричні аналізатори
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів екранними прохідними всп
- •3.Застосування поперечних хвиль і їхня фізична суть.
- •4.Первинні перетворювачі оптичного випромінювання. Їхні характеристики, класифікація, принцип дії.
- •5.Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1.Описати суть методів вимірювання октанового числа та температури сплаху нафтопродуктів
- •17.3 Засоби вимірювання октанового числа
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів накладними всп.
- •3.Фізична суть повздовжніх хвиль і їх застосування.
- •4.Візуальний та візуально-оптичний контроль якості виробів, напівфабрикатів та матеріалів.
- •5.Розрахувати акф по такій відомій спектральній щільності сигналу:
- •1.Розмірності основних фізичних величин.
- •2.Фізичні основи, конструкція і особливості контролю дефектів виробів вихрострумовим методом контролю.
- •3.Фізична суть поверхневих хвиль і хвиль Релея і їх застосування.
- •4.Фотометричні методи контролю якості.
- •5.Розрахувати спектральну щільність сигналу по такій відомій його акф:
- •1. Міжнародна система одиниць фізичних величин.
- •2. Фізичні основи, конструкція і особливості контролю рухомих об’єктів вихрострумовим методом контролю. Вплив швидкості руху всп відносно об’єкта контролю
- •3. Співвідношення між швидкостями повздовжніх, поперечних і поверхневих хвиль.Ю їх застосування.
- •4. Голографія. Голографічні методи неруйнівного контролю.
- •5. Розрахувати спектральну щільність такого детермінованого сигналу:
- •1. Різновидності похибок засобів вимірювання і похибок результатів вимірювань.
- •2. Класифікація і область застосування магнітних методів неруйнівного контролю. Основні поняття і терміни при магнітному контролі.
- •Основні поняття і терміни при магнітному контролі
- •3. Застосування зразків 1,2,3 для градуйовки дефектоскопа
- •4. Апаратура і методи телевізійного контролю. Ендоскопи.
- •5. Розрахувати спектральну щільність сигналу по такій відомій його акф:
- •1. Поняття інтегральної і диференційної функції розподілу результатів спостережень і випадкових похибок.
- •2. Поняття магнітної проникності, її види і особливості використання при магнітних методах контролю. Коефіцієнт розмагнічення і його фізична суть.
- •3 Блок-схема товщиноміра ут-93п і його застосування.
- •4. Інтерференційні методи неруйнуючого контролю виробів.
- •5. Розрахувати акф по такій відомій спектральній щільності сигналу:
- •1. Нормальний і нормалізований закони розподілу результатів спостережень і випадкових похибок.
- •2.Індукційні магнітні перетворювачі (елементи теорії, класифікація, основи конструювання). Магнітна індукційна головка.
- •3. Блок-схема дефектоскопа уд-12 і його застосування.
- •4. Нефелометричні та поляриметричні методи контролю речовини.
- •5.Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1. Обробка результатів багатократних посередніх вимірювань при лінійній залежності між вимірювальним аргументом і вимірювальною величиною
- •2. Ферозондові перетворювачі. Типи ферозондів. Суть контролю по парній гармоніці.
- •3. Поняття мертвої зони і залежність параметрів п’єзоперетворювачів від їх фізичних розмірів на базі циліндричного перетворювача.
- •4. Оптичні методи контролю геометричних розмірів.
- •Лазер; 2- дзеркало дефлектора; 3- об’єктив1; 4- ок; 5- об’єктив2; 6- фотоелемент.
- •Лазер; 2- еталонне дзеркало; 3- ок; 4- напівпрозоре дзеркало;
- •5. Розрахувати і побудувати взаємну кореляційну функцію для таких сигналів:
- •1. Обробка результатів багатократних посередніх вимірювань при нелінійній залежності між вимірювальним аргументом і вимірювальною величиною
- •2.Ферозондова установка уфст-61.
- •3. Поняття першого, другого і третього критичних кутів
- •4. Фізичні основи теплового неруйнуючого контролю. Основні закони теплового випромінювання та теплопередача. Використання їх для розробки методів теплового контролю.
- •5. Розрахувати і побудувати авковаріаційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Обробка результатів прямих вимірювань з однократними спостереженнями аргументів
- •2 Перетворювачі Холла. Чутливість, градуювальна характеристика.
- •3. Закон Снеліуса і його застосування
- •4. Первинні перетворювачі теплових величин. Індикатори теплових полів. Пристрої, використовувані в тепловому контролі.
- •5. Розрахувати і побудувати автокореляційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Посередні вимірювання з однократними спостереженнями аргументів
- •2. Магнітний дефектоскоп стальних канатів интрос і дип-2.
- •3. Вибір і обґрунтування частот перетворювача для контролю параметрів металу, бетону, пластмаси
- •2.3. Властивості ультразвукових коливань
- •4. Апаратура безконтактного контролю температури. Класифікація, будова та обґрунтування принципу дії.
- •5. Розрахувати і побудувати автоковаріаційну функцію для такого аналітично заданого періодичного інформаційного сигналу:
- •1. Диференціальний метод розрахунку похибок засобів вимірювання
- •В ідносна похибка буде такою:
- •2. Магнітні товщиноміри(типи, загальна характеристика). Магнітний товщиномір мт-41нц.
- •9.1 Фізичні основи магнітної товщинометрії
- •9.4 Індукційні товщиноміри
- •5. Розрахувати і побудувати автокореляційну функцію для такого аналітичного заданого періодичного інформаційного сигналу:
- •1. Розрахунок похибок засобів вимірювань на основі їх структурних схем.
- •2. Електропотенціальні дефектоскопи. Глибиномір тріщин типу хrt804
- •3. Схеми прозвучування таврових з‘єднань і їх особливості
- •4. Тепловізійна апаратура. Будова, принцип дії та характеристики.
- •1. Динамічні похибки засобів вимірювання і методика їх визначення.
- •2. Термоелектричний метод контролю і його технічна реалізація. Дефектоскопи типу іскра-1м
- •Електроіскровий метод контролю і його технічна реалізація
- •3. Контроль швів в нахлестку та їх особливості.
- •4. Організація теплового контролю. Дефектоскопія та інтроскопія тепловими методами.
- •1 Загальний аналіз методів підвищення точності засобів вимірювання.
- •2. Класифікація і види вихрострумових перетворювачів (всп) область їх застосування.
- •3 Схема контролю стикових з‘єднань та їх особливості
- •Джерела нвч коливань
- •2. Вихрострумовий дефектоскоп вд-26н.
- •4 Основні пристрої для формування і обробки надвисокочастотних радіосигналів і електромагнітних полів. Індикатори та перетворювачі радіохвильового випромінювання.
- •1. Автоматичне коригування похибок методом ітерацій
- •2. Фізичні основи електромагнітного контролю. Основні розрахункові сигнали всп і параметри електромагнітного контролю.
- •Очевидно, що
- •3 Визначення конфігурації та орієнтації дефектів. Визначення координат дефекту
- •4 Будова апаратури радіохвильового неруйнуючого контролю. Геометричний метод радіохвильового контролю.
- •Геометричний метод рхнк
- •5.Розрахувати і побудувати авковаріаційну функцію для такого аналітично заданого періодичного інформаційного сигналу:
- •1. Показники безвідказності електровимірювальних приладів. Показники надійності
- •2 Оптимізація умов контролю циліндричних виробів прохідними всп.
- •3. Види шумів і шумозахищеність при тіньовому і дзеркально-тіньовому методах
- •4 Методи радіохвильового неруйнуючого контролю для визначення фізичних параметрів об'єктів контролю. Вимірювання товщини листа методом пройшовшого радіовипромінення
- •5. Розрахувати і побудувати автокореляційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Показники довговічності, ремонто-придатності і зберігання приладів
- •2 Вихрострумовий вимірювач типу итм-11.
- •3. Основні параметри ультразвукового контролю зварних з’єднань
- •4. Дефектоскопія радіохвильовим методом. Основні принципи дії та будова радіохвильових дефектоскопів, особливості їхнього застосування.
- •5 Розрахувати і побудувати автоковаріаційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Яка різниця у будові та принципу дії цифрових фазометрів і частотомірів?
- •3 Фізична суть ехо-імпульсного методу і його застосування.
- •Роль і місце методів контролю проникаючими випромінюваннями та речовинами. Фізичні основи контролю іонізуючими випромінюваннями. Взаємодія іонізуючих випромінювань з речовиною.
- •1. Яка різниця у будові та принципу дії цифрових вимірювальних приладів часового перетворення розгортаючої та інтегруючої дії? Цифрові вольтметри розгортаючого часового перетворення
- •6.3.2 Інтегруючі цифрові вольтметри часового перетворення
- •2 Фізичні основи, конструкції і область застосування перетворювачів Холла.
- •3 Фізична суть тіньового методу і його застосування.
- •4. Радіоізотопні джерела іонізуючого випромінювання та джерела на основі прискорювачів заряджених частинок.
- •5. Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1 Яка різниця у будові та принципу дії цифрових вимірювальних приладів розгортаючого зрівноважування одиничного та порядкового наближення? Цифрові вольтметри зрівноважуючого перетворення
- •2 Фізичні основи, конструкції і область застосування індукційних перетворювачів.
- •3 Фізична суть дзеркально-тіньового методу і його застосування.
- •4 Детектори іонізуючого випромінювання, їхні типи та застосування, використання підсилюючих екранів.
- •1. Здійснити порівняльну характеристику аналогових електромеханічних приладів магнітоелектричної і електромагнітної систем. Магнітоелектричні вимірювальні прилади
- •2. Фізичні основи, конструкції і область застосування магніторезистивних перетворювачів.
- •4 Характеристики методів промислової радіографії. Вибір та обґрунтування режимів просвічування в радіографії.
- •Геометрична нерізкість визначається з співвідношення
- •1 Здійснити порівняльну характеристику аналогових електромеханічних приладів електростатичної і електродинамічної систем.
- •2 Фізичні основи, конструкції і область застосування магнітопорошкових дефектоскопів.
- •3 Фізична суть імпедансного методу і його застосування.
- •4. Засоби техніки ізотопної радіографії. Основні типи гамма-дефектоскопів.
- •5.4 Потенціометри змінного струму
- •3 Фізична суть акустичної емісії і її застосування.
- •4. Фізичні основи радіометрії. Методи та засоби радіометрії. Методики та схеми радіометричної дефектоскопії. Радіометричні гамма-дефектоскопи.
- •7.1 Світлопроменеві осцилографи (спо)
- •7.2 Електронно-променеві осцилографи (епо).
- •2. Фізичні основи, конструкція і область застосування індукційних дефектоскопів. Індукційні магнітні дефектоскопи
- •4.1 Пасивні індукційні перетворювачі
- •4.2 Магнітна індукційна головка
- •3 Методи визначення швидкості поширення уз коливань.
- •4. Радіоскопія, область застосування. Технічні засоби радіоскопії. Методика і техніка радіоскопічного контролю.
- •1. Здійснити порівняльну характеристику пікнометричних і п’єзометричних густиномірів. Вагові (пікнометричні) густиноміри
- •2 Фізичні основи, конструкція і область застосування магнітних товщиномірів пондеромоторної дії та магнітостатичних товщиномірів. Магнітні товщиноміри
- •9.1 Фізичні основи магнітної товщинометрії
- •9.2 Товщиноміри пондеромоторної дії
- •9.3 Магнітостатичні товщиноміри
- •3. Способи зондування виробів за допомогою уз.
- •5. Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1. Здійснити порівняльну характеристику ротаційних та капілярних віскозиметрів. Вимірювання в'язкості рідин
- •13.1 Капілярні віскозиметри.
- •13.3. Ротаційні візкозиметри
- •2 Фізичні основи, конструкція і область застосування магнітних структуроскопів. Магнітні структуроскопи
- •10.1 Фізичні основи магнітної структуроскопії
- •10.2 Коерцитиметри
- •3. Конструкція уз перетворювачів.
- •4. Фізичні основи рентгенівської дефектоскопії. Засоби і техніка рентгенографії, їх класифікація , області застосування.
- •5. Розрахувати і побудувати взаємну кореляційну функцію для таких сигналів:
5. Розрахувати спектральну щільність такого детермінованого сигналу:
A e-t при 0 t
Х(t) =
0 при t 0,
де А=5В; = 0,3.
№12
1. Різновидності похибок засобів вимірювання і похибок результатів вимірювань.
Якість засобів і результатів вимірювання прийнято характеризувати їх похибками.
Похибка результату вимірювання – це число, яке вміщує можливі границі невизначеності отриманого значення вимірюваної величини. Похибка засобу вимірювання – це певна його властивість, для визначення якої необхідно використовувати певні правила. Похибки засобів вимірювань і похибки результатів вимірювань – це поняття не ідентичні.
Частина назв різновидностей похибок пов’язана з похибками засобів вимірювань, інша частина – з похибками результатів вимірювань, а деякі різновидності похибок використовуються як по відношенню до засобів, так і до результатів вимірювань.
Інструментальними похибками ЗВ називаються такі, які належать конкретному ЗВ і можуть бути визначеними при його випробуваннях і бути занесеними в паспорт на цей засіб вимірювань.
Крім інструментальних похибок при вимірюваннях ще є такі похибки, які не можуть бути віднесеними до інструментальних даного ЗВ, а є пов’язані з методикою проведення вимірювань. Такі похибки наз. методичними. Прикладом такої методичної похибки може бути похибка, яка виникає при вимірюванні напруги вольтметром. Внаслідок шунтування вхідним опором вольтметра тої ділянки схеми, на якій вимірюється напруга, вона виявиться меншою, ніж до під єднання вольтметра.
Основна і додаткова похибки ЗВ. Будь-який вимірювальний прилад працює в умовах, які можуть змінюватися в часі. Це зумовлено тим, що процес вимірювання характеризується впливом на засіб вимірювань окремих факторів. Кожен із факторів може бути виміряним окремо, але в реальних умовах ці фактори впливають на ЗВ разом з іншими факторами. Одним із таких факторів є вимірювана величина. Тому необхідно, щоб ЗВ виділив саме вимірювану величину, а всі інші фактори зумів усунути.
Нормальними називаються умови вивіряння чи градуювання, які обумовлені в технічній документації на ЗВ, а похибка ЗВ, яка виникає при таких умовах, називається основною похибкою.
Похибки, які виникають у ЗВ в результаті його показів внаслідок відхилення умов експлуатації від нормальних умов, називаються додатковими похибками і нормуються, так званими коефіцієнтами впливу зміни окремих сторонніх факторів на покази ЗВ.
Похибка ЗВ в реальних умовах його експлуатації наз. експлуатаційною і складається із його основної похибки і всіх додаткових похибок і може бути значно більшою від його основної похибки.
Статичні і динамічні похибки, які властиві як ЗВ, так і результатом вимірювань, розрізняють по їх залежності від швидкості зміни вимірюваної
величини в часі. Похибки, які не залежать від вказаної швидкості наз. статичними. Похибки, які є відсутніми, коли вказана швидкість практично дорівнює нулю, і збільшуються при збільшенні швидкості зміни вимірюваної величини, наз. динамічними похибками. Таким чином, динамічні похибки є однією із різновидностей додаткових похибок, які викликаються швидкістю зміни в часі вимірюваної величини.
Систематичні, прогресуючі і випадкові похибки. Систематичними називаються похибки, які змінюються з часом і є певними функціями визначених параметрів. Основна відмінна ознака систематичних похибок полягає у тому, що вони можуть бути передбаченими і завдяки цьому майже повністю виключеними шляхом введення відповідних поправок. Значна небезпека постійних систематичних похибок полягає в тому, що їх наявність досить важко виявити.
Прогресуючими наз. такі непередбачені похибки, які повільно змінюються в часі. Вони виникають в результаті процесів старіння різних деталей ЗВ. Вони можуть бути скоригованими шляхом введення поправки лише в даний момент часу, а пізніше вони знову непередбачено змінюються.
Випадковими наз. похибки, які не є передбаченими ні по знаку, ні по розміру. Вони визначаються сукупністю причин, що важко піддаються аналізу. Випадкові похибки, на відміну від систематичних, легко виявляються при повторних вимірюваннях у вигляді деякого розкиду отриманих результатів.
Похибки адекватності і градуювання ЗВ. Систематичне відхилення експериментальних даних від вибраної характеристики плавної кривої в загальному випадку наз. похибкою адекватності вибраної функціональної залежності фактичній характеристиці ЗВ. Якщо такою характеристикою є пряма лінія, то похибка її адекватності наз. похибкою лінійності ЗВ. Якщо похибка адекватності змінює свій знак залежно від напрямку попереднього відліку зміни вхідної величини, то така похибка ЗВ наз. похибкою від гістерезисну або варіацією ЗВ.
Похибки ЗВ можуть бути також обумовлені недостатньою точністю взірцевих засобів, що використовуються при градуюванні. Взірцеві ЗВ можуть містити систематичну похибку, а в процесі градуювання чи вивіряння мають місце лише випадкові похибки. Всі ці похибки об’єднуються під однією спільною назвою - похибка градуювання.
Абсолютна,
відносна і приведена похибки ЗВ.
Різниця між реальною і номінальною
характеристиками при заданому значенні
х,
тобто
,
або при заданому значенні у,
тобто
є абсолютними
похибками,
так як вони виражаються відповідно в
одиницях величин х
і у.
Знак абсолютної похибки приймається
додатнім, якщо реальна характеристика
знаходиться вище номінальної. Ця похибка
не може сама по собі бути показником
точності вимірювань, тому для цього
вводять поняття відносної
похибки
,
яке виражається у відносних одиницях
або у відсотках. Однак відносна похибка
не завжди підходить для нормування
похибки ЗВ, так як при різних значеннях
х буде приймати різні значення, в тому
числі і
при х=0.
Тому
для нормування похибки ЗВ використовують
так звану приведену
похибку
,
яка визначається як відношення абсолютної
похибки, вираженої в одиницях вхідної
чи вихідної
величин, до діапазону зміни відповідно
вхідної
чи вихідної
величин ЗВ і виражається у відносних
одиницях або у відсотках
.
Адитивні і мультиплікативні похибки. Ці терміни використовуються для опису форми границь смуги похибок ЗВ. При повірці чи градуюванні ЗВ отримують ряд значень вхідної величини і ряд відповідних їм значень вихідної величини. Якщо побудувати графік по цих точках, то вони розмістяться в межах деякої смуги. У випадку коли точки лежать в межах ліній, які паралельні одна одній, тобто абсолютна похибка ЗВ на всьому діапазоні зміни вхідної величини х, то така похибка наз. адитивною або похибкою нуля.
Якщо смуга похибок має ширину смуги, яка збільшується пропорційно зростанню вхідної величини х, а при х=0 ця ширина смуги =0, то така похибка наз. мультиплікативною або похибкою чутливості. Вона, як адитивна похибка, може бути як систематичною, так і випадковою.
Похибка квантування – це специфічна різновидність похибки, яка виникає в цифрових приладах і дискретних перетворювачах.