
- •1.У чому полягає принцип побудови температурних шкал, назвати їх основні види?
- •2. Фізичні основи, конструкція і область застосування вихрострумових товщиномірів покриття металів.
- •3. Способи контакту уз перетворювачів з поверхнею виробу.
- •4. Рентгенівські трубки, їх характеристики, класифікація, основні конструкції, типи. Оптична система рентгенівських трубок, її розрахунок.
- •5. Розрахувати і побудувати афх, ачх і фчх для ланки обробки сигналів по їх передавальній функції:
- •Здійснити порівняльну оцінку різних типів термометрів розширення.
- •9.2. Термометри розширення
- •9.2.1. Рідинні термометри
- •9.2.2. Дилатометричні та біметалеві термометри.
- •9.2.3. Манометричні термометри.
- •2. Фізичні основи, конструкція і область застосування вихрострумових структуроскопів.
- •3. Амплітудно-частотна характеристика уз перетворювачів і її параметри.
- •4. Тепловий захист рентгенівських трубок, його розрахунок.
- •1.Описати принцип роботи та назвати основні види пірометрів.
- •2.9.1 Яскравісні пірометри
- •2.9.2 Кольорові пірометри
- •2.9.3 Радіаційні пірометри
- •2.Фізичні основи, конструкція і область застосування вихрострумових дефектоскопів з мікропроцесорами і мікроЕом
- •3.Коефіцієнти електромеханічного перетворення.
- •4.Промислові рентгенівські товщиноміри. Рентгеноструктурний та спектральний аналіз в промисловій дефектоскопії
- •5.Розрахувати і побудувати автокореляційну функцію для такого аналітичного заданого періодичного інформаційного сигналу:
- •1.Описати основні види рідинних манометрів.
- •2.Фізичні основи, конструкція і область застосування електроємнісного методу контролю.
- •3.Основні типи п’єзоперетворювачів для уз апаратури.
- •4.Фізичні основи контролю проникаючими речовинами. Матеріали для проведення контролю проникаючими речовинами.
- •5.Розрахувати і побудувати автоковаріаційну функцію для такого аналітичного заданого періодичного інформаційного сигналу:
- •1.Здійснити порівняльну оцінку звужуючих пристроїв у витратомірах змінного перепаду тиску.
- •10.3 Витратоміри змінного перепаду тиску (дросельні)
- •10.3.1 Теоретичні основи
- •10.3.2 Звужуючі пристрої у витратомірах змінного перепаду тиску
- •2.Фізичні основи, конструкція і область застосування електропотенційних і термоелектричних дефектоскопів.
- •14 Електропотенціальний метод контролю і його технічна реалізація
- •11.5 Термоелектричний метод контролю і його технічна реалізація
- •3.Способи визначення товщини безеталонним методом.
- •4.Апаратура для проведення неруйнівного контролю з використанням проникаючих речовин. Методика проведення контролю якості виробів з використанням проникаючих речовин.
- •5.Розрахувати і побудувати автокореляційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Здійснити порівняльну оцінку основних типів лічильників об’ємного методу.
- •Засоби вимірювання витрати називають витратомірами.
- •10.1 Об’ємні методи вимірювання витрати
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів зовнішніми прохідними вихрострумовими перетворювачами (всп).
- •3.Конструкція п’єзоперетворювача і призначення основних його елементів.
- •4.Фізичні основи неруйнуючого контролю електромагнітними випромі-нюваннями.Характеристики електромагнітних випромінювань. Взаємодія електромаг-нітного випромінювання з речовиною.
- •5.Розрахувати і побудувати автоковаріаційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1.Здійснити порівняльну оцінку буйкових та поплавкових рівнемірів.
- •11.2 Поплавкові рівнеміри
- •11.3 Буйкові рівнеміри
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів внутрішніми прохідними всп.
- •3.Коефіцієнти відбиття і поглинання, їх взаємозв’язок.
- •4.Джерела електромагнітного випромінювання для оптичного та теплового контролю. Елементи оптичних систем.
- •5.Розрахувати і побудувати взаємну кореляційну функцію для таких сигналів
- •1.На якій основній властивості певного параметру, яким характеризується досліджувана суміш, базується вимірювання концентрації. Навести приклади аналізаторів різних типів.
- •15.1 Термокондуктометричні газоаналізатори
- •15.2. Дифузійні газоаналізатори
- •15.3. Магнітні газоаналізатори
- •15.4 Потенціометричні аналізатори
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів екранними прохідними всп
- •3.Застосування поперечних хвиль і їхня фізична суть.
- •4.Первинні перетворювачі оптичного випромінювання. Їхні характеристики, класифікація, принцип дії.
- •5.Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1.Описати суть методів вимірювання октанового числа та температури сплаху нафтопродуктів
- •17.3 Засоби вимірювання октанового числа
- •2.Фізичні основи, конструкція і область застосування методу контролю виробів накладними всп.
- •3.Фізична суть повздовжніх хвиль і їх застосування.
- •4.Візуальний та візуально-оптичний контроль якості виробів, напівфабрикатів та матеріалів.
- •5.Розрахувати акф по такій відомій спектральній щільності сигналу:
- •1.Розмірності основних фізичних величин.
- •2.Фізичні основи, конструкція і особливості контролю дефектів виробів вихрострумовим методом контролю.
- •3.Фізична суть поверхневих хвиль і хвиль Релея і їх застосування.
- •4.Фотометричні методи контролю якості.
- •5.Розрахувати спектральну щільність сигналу по такій відомій його акф:
- •1. Міжнародна система одиниць фізичних величин.
- •2. Фізичні основи, конструкція і особливості контролю рухомих об’єктів вихрострумовим методом контролю. Вплив швидкості руху всп відносно об’єкта контролю
- •3. Співвідношення між швидкостями повздовжніх, поперечних і поверхневих хвиль.Ю їх застосування.
- •4. Голографія. Голографічні методи неруйнівного контролю.
- •5. Розрахувати спектральну щільність такого детермінованого сигналу:
- •1. Різновидності похибок засобів вимірювання і похибок результатів вимірювань.
- •2. Класифікація і область застосування магнітних методів неруйнівного контролю. Основні поняття і терміни при магнітному контролі.
- •Основні поняття і терміни при магнітному контролі
- •3. Застосування зразків 1,2,3 для градуйовки дефектоскопа
- •4. Апаратура і методи телевізійного контролю. Ендоскопи.
- •5. Розрахувати спектральну щільність сигналу по такій відомій його акф:
- •1. Поняття інтегральної і диференційної функції розподілу результатів спостережень і випадкових похибок.
- •2. Поняття магнітної проникності, її види і особливості використання при магнітних методах контролю. Коефіцієнт розмагнічення і його фізична суть.
- •3 Блок-схема товщиноміра ут-93п і його застосування.
- •4. Інтерференційні методи неруйнуючого контролю виробів.
- •5. Розрахувати акф по такій відомій спектральній щільності сигналу:
- •1. Нормальний і нормалізований закони розподілу результатів спостережень і випадкових похибок.
- •2.Індукційні магнітні перетворювачі (елементи теорії, класифікація, основи конструювання). Магнітна індукційна головка.
- •3. Блок-схема дефектоскопа уд-12 і його застосування.
- •4. Нефелометричні та поляриметричні методи контролю речовини.
- •5.Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1. Обробка результатів багатократних посередніх вимірювань при лінійній залежності між вимірювальним аргументом і вимірювальною величиною
- •2. Ферозондові перетворювачі. Типи ферозондів. Суть контролю по парній гармоніці.
- •3. Поняття мертвої зони і залежність параметрів п’єзоперетворювачів від їх фізичних розмірів на базі циліндричного перетворювача.
- •4. Оптичні методи контролю геометричних розмірів.
- •Лазер; 2- дзеркало дефлектора; 3- об’єктив1; 4- ок; 5- об’єктив2; 6- фотоелемент.
- •Лазер; 2- еталонне дзеркало; 3- ок; 4- напівпрозоре дзеркало;
- •5. Розрахувати і побудувати взаємну кореляційну функцію для таких сигналів:
- •1. Обробка результатів багатократних посередніх вимірювань при нелінійній залежності між вимірювальним аргументом і вимірювальною величиною
- •2.Ферозондова установка уфст-61.
- •3. Поняття першого, другого і третього критичних кутів
- •4. Фізичні основи теплового неруйнуючого контролю. Основні закони теплового випромінювання та теплопередача. Використання їх для розробки методів теплового контролю.
- •5. Розрахувати і побудувати авковаріаційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Обробка результатів прямих вимірювань з однократними спостереженнями аргументів
- •2 Перетворювачі Холла. Чутливість, градуювальна характеристика.
- •3. Закон Снеліуса і його застосування
- •4. Первинні перетворювачі теплових величин. Індикатори теплових полів. Пристрої, використовувані в тепловому контролі.
- •5. Розрахувати і побудувати автокореляційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Посередні вимірювання з однократними спостереженнями аргументів
- •2. Магнітний дефектоскоп стальних канатів интрос і дип-2.
- •3. Вибір і обґрунтування частот перетворювача для контролю параметрів металу, бетону, пластмаси
- •2.3. Властивості ультразвукових коливань
- •4. Апаратура безконтактного контролю температури. Класифікація, будова та обґрунтування принципу дії.
- •5. Розрахувати і побудувати автоковаріаційну функцію для такого аналітично заданого періодичного інформаційного сигналу:
- •1. Диференціальний метод розрахунку похибок засобів вимірювання
- •В ідносна похибка буде такою:
- •2. Магнітні товщиноміри(типи, загальна характеристика). Магнітний товщиномір мт-41нц.
- •9.1 Фізичні основи магнітної товщинометрії
- •9.4 Індукційні товщиноміри
- •5. Розрахувати і побудувати автокореляційну функцію для такого аналітичного заданого періодичного інформаційного сигналу:
- •1. Розрахунок похибок засобів вимірювань на основі їх структурних схем.
- •2. Електропотенціальні дефектоскопи. Глибиномір тріщин типу хrt804
- •3. Схеми прозвучування таврових з‘єднань і їх особливості
- •4. Тепловізійна апаратура. Будова, принцип дії та характеристики.
- •1. Динамічні похибки засобів вимірювання і методика їх визначення.
- •2. Термоелектричний метод контролю і його технічна реалізація. Дефектоскопи типу іскра-1м
- •Електроіскровий метод контролю і його технічна реалізація
- •3. Контроль швів в нахлестку та їх особливості.
- •4. Організація теплового контролю. Дефектоскопія та інтроскопія тепловими методами.
- •1 Загальний аналіз методів підвищення точності засобів вимірювання.
- •2. Класифікація і види вихрострумових перетворювачів (всп) область їх застосування.
- •3 Схема контролю стикових з‘єднань та їх особливості
- •Джерела нвч коливань
- •2. Вихрострумовий дефектоскоп вд-26н.
- •4 Основні пристрої для формування і обробки надвисокочастотних радіосигналів і електромагнітних полів. Індикатори та перетворювачі радіохвильового випромінювання.
- •1. Автоматичне коригування похибок методом ітерацій
- •2. Фізичні основи електромагнітного контролю. Основні розрахункові сигнали всп і параметри електромагнітного контролю.
- •Очевидно, що
- •3 Визначення конфігурації та орієнтації дефектів. Визначення координат дефекту
- •4 Будова апаратури радіохвильового неруйнуючого контролю. Геометричний метод радіохвильового контролю.
- •Геометричний метод рхнк
- •5.Розрахувати і побудувати авковаріаційну функцію для такого аналітично заданого періодичного інформаційного сигналу:
- •1. Показники безвідказності електровимірювальних приладів. Показники надійності
- •2 Оптимізація умов контролю циліндричних виробів прохідними всп.
- •3. Види шумів і шумозахищеність при тіньовому і дзеркально-тіньовому методах
- •4 Методи радіохвильового неруйнуючого контролю для визначення фізичних параметрів об'єктів контролю. Вимірювання товщини листа методом пройшовшого радіовипромінення
- •5. Розрахувати і побудувати автокореляційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Показники довговічності, ремонто-придатності і зберігання приладів
- •2 Вихрострумовий вимірювач типу итм-11.
- •3. Основні параметри ультразвукового контролю зварних з’єднань
- •4. Дефектоскопія радіохвильовим методом. Основні принципи дії та будова радіохвильових дефектоскопів, особливості їхнього застосування.
- •5 Розрахувати і побудувати автоковаріаційну функцію з використанням алгоритму цифрової обробки для такого сигналу:
- •1. Яка різниця у будові та принципу дії цифрових фазометрів і частотомірів?
- •3 Фізична суть ехо-імпульсного методу і його застосування.
- •Роль і місце методів контролю проникаючими випромінюваннями та речовинами. Фізичні основи контролю іонізуючими випромінюваннями. Взаємодія іонізуючих випромінювань з речовиною.
- •1. Яка різниця у будові та принципу дії цифрових вимірювальних приладів часового перетворення розгортаючої та інтегруючої дії? Цифрові вольтметри розгортаючого часового перетворення
- •6.3.2 Інтегруючі цифрові вольтметри часового перетворення
- •2 Фізичні основи, конструкції і область застосування перетворювачів Холла.
- •3 Фізична суть тіньового методу і його застосування.
- •4. Радіоізотопні джерела іонізуючого випромінювання та джерела на основі прискорювачів заряджених частинок.
- •5. Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1 Яка різниця у будові та принципу дії цифрових вимірювальних приладів розгортаючого зрівноважування одиничного та порядкового наближення? Цифрові вольтметри зрівноважуючого перетворення
- •2 Фізичні основи, конструкції і область застосування індукційних перетворювачів.
- •3 Фізична суть дзеркально-тіньового методу і його застосування.
- •4 Детектори іонізуючого випромінювання, їхні типи та застосування, використання підсилюючих екранів.
- •1. Здійснити порівняльну характеристику аналогових електромеханічних приладів магнітоелектричної і електромагнітної систем. Магнітоелектричні вимірювальні прилади
- •2. Фізичні основи, конструкції і область застосування магніторезистивних перетворювачів.
- •4 Характеристики методів промислової радіографії. Вибір та обґрунтування режимів просвічування в радіографії.
- •Геометрична нерізкість визначається з співвідношення
- •1 Здійснити порівняльну характеристику аналогових електромеханічних приладів електростатичної і електродинамічної систем.
- •2 Фізичні основи, конструкції і область застосування магнітопорошкових дефектоскопів.
- •3 Фізична суть імпедансного методу і його застосування.
- •4. Засоби техніки ізотопної радіографії. Основні типи гамма-дефектоскопів.
- •5.4 Потенціометри змінного струму
- •3 Фізична суть акустичної емісії і її застосування.
- •4. Фізичні основи радіометрії. Методи та засоби радіометрії. Методики та схеми радіометричної дефектоскопії. Радіометричні гамма-дефектоскопи.
- •7.1 Світлопроменеві осцилографи (спо)
- •7.2 Електронно-променеві осцилографи (епо).
- •2. Фізичні основи, конструкція і область застосування індукційних дефектоскопів. Індукційні магнітні дефектоскопи
- •4.1 Пасивні індукційні перетворювачі
- •4.2 Магнітна індукційна головка
- •3 Методи визначення швидкості поширення уз коливань.
- •4. Радіоскопія, область застосування. Технічні засоби радіоскопії. Методика і техніка радіоскопічного контролю.
- •1. Здійснити порівняльну характеристику пікнометричних і п’єзометричних густиномірів. Вагові (пікнометричні) густиноміри
- •2 Фізичні основи, конструкція і область застосування магнітних товщиномірів пондеромоторної дії та магнітостатичних товщиномірів. Магнітні товщиноміри
- •9.1 Фізичні основи магнітної товщинометрії
- •9.2 Товщиноміри пондеромоторної дії
- •9.3 Магнітостатичні товщиноміри
- •3. Способи зондування виробів за допомогою уз.
- •5. Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
- •1. Здійснити порівняльну характеристику ротаційних та капілярних віскозиметрів. Вимірювання в'язкості рідин
- •13.1 Капілярні віскозиметри.
- •13.3. Ротаційні візкозиметри
- •2 Фізичні основи, конструкція і область застосування магнітних структуроскопів. Магнітні структуроскопи
- •10.1 Фізичні основи магнітної структуроскопії
- •10.2 Коерцитиметри
- •3. Конструкція уз перетворювачів.
- •4. Фізичні основи рентгенівської дефектоскопії. Засоби і техніка рентгенографії, їх класифікація , області застосування.
- •5. Розрахувати і побудувати взаємну кореляційну функцію для таких сигналів:
5. Розрахувати і побудувати взаємну кореляційну функцію з використанням алгоритму цифрової обробки для таких сигналів:
№35
1. Здійснити порівняльну характеристику ротаційних та капілярних віскозиметрів. Вимірювання в'язкості рідин
В'язкість характеризує властивість рідин і газів чинити опір переміщенню однієї їх частини відносно іншої. Основний закон в'язкості описується формулою Ньютона
(13.1)
де F - тангенціальна (дотична) сила, яка викликає зсув шарів рідини;
S - площа шару, по якій відбувається зсув;
- динамічна в'язкість, яка характеризує опір рідини зміщенню її шарів;
-
градієнт швидкості V
течії (швидкості зміни її від шару до
шару) по нормалі r.
Використовують
також поняття кінематичної в’язкості
,
яке відповідає відношенню динамічної
вязкості до густини середовища. Одиниця
кінематичної в’язкості в ситемі СІ -
Пас,
в системі СГС – П (пуаз), одиниця
кінематичної в’язкоті в СІ – м2/с,
в СГС – ст (стокс).
Співвідношення між названими одиницями:
1П=10-1Пас, 1ст==10-4м2/с
В’язкість рідин із збільшенням температури зменшується, а газів збільшується. Засоби вимірювання в’язкості називаються віскозиметрами.
13.1 Капілярні віскозиметри.
Витік рідини через капіляр описується законом Пуазейля
,
(13.2)
де Q - об'ємна витрата рідини;
d, l - внутрішній діаметр і довжина капіляру;
Р1, Р2 - тиск рідини до і після капіляру вздовж потоку.
При постійній витраті рідини вираз (13.2) можна перетворити до виду:
k, (13.3)
де k=128lQ/d4 – постійний коефіцієнт.
На рис.13.1 показана схема капілярного віскозиметра, в якому значення динамічнох в’язкості визначається за перепадом тиску на капілярі, тобто за допомогою формули(13.3).
Рисунок 13.1 – Схема капілярного візкозиметра Насос 1, який приводится в рух двигуном 2 забезпечує постійну подачу рідини в змійовик 3 (Q=51мл/хв). Рідина нагрівається в змійовику до температури масла (t=50C або 100С), яке заповнює термостат 6. Проходячи через капіляр 4 рідина на виході має тиск менший, ніж на вході капіляру. Перепад тиску на капілярі вимірюється дифманоментром 5. Діапазон вимірювання від (0…2)10-3Пас до (0…1000)10-3 Пас. Класи точності віскозиметрів – 1,5…2,5.
13.3. Ротаційні візкозиметри
Принцип дії базується на вимірюванні обертового моменту, який виникає на осі ротора, зануреного у вимірюване середовище, при взаємному їх переміщенні. Крутний момент описується виразом:
М=k, (13.6)
де k - постійний коефіцієнт, який залежить від конструкції ротора;
- кутова швидкість обертання ротора.
На рис. 13.3 показані різні конструкції елементів обертання ротаційних віскозиметрів. Таким елементом обертання може бути циліндр (рис.13.3,а), куля (рис.13.3,б), диски на спільному валі (рис. 13.3,в). В'язкість визначається за моментом сил тертя, який виникає при обертанні тіла, зануреного в рідину.
Рисунок 13.3 – Схеми ротаційних віскозиметрів.
В інших віскозиметрах момент обертання, який створюється диском (рис.13.3 г) або циліндром (рис.13.3,д), передається через рідину диску або циліндру 3. Диску або циліндру обертовий рух надається синхронним двигуном 1. Обертовий момент, який виникає на диску або циліндрі 3, а значить, на шківі 5, який знаходиться на одному валі 4 з диском 3 пропорційний динимічній в’язкості. Цей момент зрівноважується силою пружної деформації пружини 7, з’єднаної з гнучкою ниткою 6, що прикріплена до шківа 5. Значення деформації пружини можна спостерігати за шкалою 8. При допомозі перетворювача 9 сила пружної деформації перетворюється в уніфікований сигнал.
Діапазон вимірювання ротаційних візкозиметрів – (0,01…1000)Пас. Класи точності в межах (1…2,5).