- •Принцип функционально-узлового проектирования электронных систем
- •Способы обеспечения качественных характеристик и технологичности функциональных узлов. Способы обеспечения точности и стабильности параметрв.
- •3. Ряды номиналов и схемы замещения стандартных функциональных рядов
- •7. Функциональная микроэлектроника, краткая характеристика и области применения устройств на ее базе.
- •8. Управляемые (зависимые) источники тока и напряжения, идеальный усилитель и его свойства.
- •Идеальный операционный усилитель
- •9. Временная и частотная фильтрация. Виды фильтров. Фильтры низких и высоких частотна пассивных р еактивных элементах.
- •Частотные фильтры характеризуются показателями:
- •Одноэлементные фильтры высоких и низких частот
- •П олосовые резонансные фильтры
- •10. Полупроводники и их свойства. Электронно-дырочный переход при отсутствии внешнего напряжения, диффузионный и дрейфовый токи, механизм образования запирающего слоя.
- •11. Технологии получения и свойства p-n перехода в полупроводнике, зонная теория p-n перехода.
- •12. Переход металл – полупроводник, его вольтамперная характеристика, способы улучшения линейности.
- •13. Полупроводниковые диоды. Принцип работы, вольтамперные характеристики, частотные свойства. Работа диода при больших токах, область безопасной работы (обр).
- •14. Биполярные транзисторы, схемы замещения, частотные сворйства, усилительные свойства, ключ на транзисторе, обр.
- •1 5. Принцип работы, структура и вольтамперные характеристики динисторов и тиристоров, их основные параметры, вах, обр. Запираемые (двухоперационные) тиристоры.
- •16. Униполярные транзисторы, их разновидности и схемы замещения, схемы включения, частотные свойства, усилительные свойства, усилитель и ключ на транзисторе, обр.
- •17. Принцип работы и вольтамперные характеристики бтиз – транзисторов.
- •18. Сит и бсит – транзисторы. Принцип работы, вольтамперные характеристики. Работа сит – транзистора в ключевом режиме, особенности схем включения, обр.
- •19. Основные схемы включения транзисторов и их характеристики.
- •20. Работа транзистора в ключевом режиме.
- •21. Схемы параллельного и последовательного включения диодов и транзисторов. Способы и схемы выравнивания токов и напряжений.
- •22. Специфика работы полупроводниковых диодов и транзисторов при больших токах. Работа полупроводниковых диодов и транзисторов в составе интегральных схем, эффект близости.
- •Типы диодов
- •Биполярные транзисторы
- •24. Однофазный однополупериодный однофазный выпрямитель. Основные расчетные соотношения характеристик при работе на r, l, c нагрузку, области применения.
- •27. Управляемые выпрямители, основные расчетные соотношения, способы управления.
- •28. Система управления выпрямителями. Вертикальное и горизонтальное управление. Системы импульсно-фазового управления (сифу), классификация, реализация сифу в аналоговом и цифровом виде.
- •Горизонтальный метод управления
- •Вертикальный метод управления
- •29. Сглаживающие фильтры. Основные характеристики и принципы работы.
- •3 2. Импульсные стабилизаторы напряжения и тока.
- •33. Регуляторы постоянного напряжения. Основные схемы и режимы их работы, краткая характеристика. Выбор коммутирующих полупроводниковых приборов.
- •34. Конверторы постоянного напряжения. Основные схемы и режим работы, краткая характеристика. Выбор коммутирующих полупроводниковых приборов.
- •35. Тиристорные и танзисторные преобразователи напряжения и частоты. Классификация и назначение.
- •36. Тиристорные пускатели асинхронных двигателей. Принцип работы, структурная схема, основные параметры. Комбинированные пускатели.
- •37. Тиристорные преобразователи частоты с непосредственной связью (нпч). Получение низкочастотного тока и напряжения.
- •Достоинства преобразователя частоты с непосредственной связью с естественной коммутацией
- •Основные недостатки частотных преобразователей с непосредственной связью
- •Частотные преобразователи с принудительной коммутацией и непосредственной связью с сетью
3. Ряды номиналов и схемы замещения стандартных функциональных рядов
Номиналы промышленно выпускаемых радиодеталей (сопротивление резисторов, ёмкость конденсаторов, индуктивность небольших катушек индуктивности) не являются произвольными. Существуют специальные ряды номиналов, представляющие собой множества значений от 1 до 10. Номинал детали определённого ряда является произвольным значением из соответствующего множества, умноженным на произвольный десятичный множитель (10 в целой степени). Например: резистор из ряда E12 может иметь один из следующих номиналов (сопротивлений):
1,2 Ом
12 Ом
120 Ом
Название ряда указывает общее число элементов в нём, т. е. ряд E24 содержит 24 числа в интервале от 1 до 10, E12 — 12 чисел и т. д. +1
Каждый ряд соответствует определённому допуску в номиналах деталей. Так, детали из ряда E6 имеют допустимое отклонение от номинала ±20 %, из ряда E12 — ±10 %, из ряда E24 — ±5 %. Собственно, ряды устроены таким образом, что следующее значение отличается от предыдущего чуть меньше, чем на двойной допуск.
Ряд E24 приблизительно представляет собой геометрическую прогрессию со знаменателем 101/24. Другими словами, в логарифмическом масштабе элементы этого ряда делят отрезок от 1 до 10 на 24 равные части. По некоторым, видимо историческим, соображениям некоторые элементы отличаются от идеальной прогрессии, хотя и никогда не больше, чем на 2,5 %. Номинальные ряды с меньшим количеством элементов получаются вычёркиванием элементов из ряда E24 через один.
Есть
универсальный способ определения
номинала для любого ряда
,
где m - номер ряда, а n=0;1;2;...;m-1
7. Функциональная микроэлектроника, краткая характеристика и области применения устройств на ее базе.
Функциональная (микро)электроника — одно из современных направлений микроэлектроники, основанное на использовании физических принципов интеграции и динамических неоднородностей, обеспечивающих несхемотехнические принципы работы устройств. Функциональная интеграция обеспечивает работу прибора, как единого целого. Разделение его на элементы приводит к нарушению функционирования. В функциональной микроэлектронике используется взаимодействие потоков электронов со звуковыми волнами в твёрдом теле, оптические явления в твёрдом теле, свойства полупроводников, магнетиков и сверхпроводников в магнитных полях и др
Функциональная микроэлектроника
Функциональная микроэлектроника предлагает принципиально новый подход, позволяющий реализовать определенную функцию аппаратуры без применения стандартных базовых элементов, основываясь непосредственно на физических явлениях в твердом теле.
Основные направления развития функциональной микроэлектроники
Эти особенности стали основой интенсивно развивающегося направления функциональной микроэлектроники — оптоэлектроники.
Такие явления, как генерация и усиление акустических волн потоком электронов, движущихся со сверхзвуковыми скоростями, обусловили появление нового направления функциональной микроэлектроники — акустоэлектроники.
Они привели к возникновению нового направления — квантовой микроэлектроники.
Интересными материалами с еще не вполне раскрытыми перспективами использования их в микроэлектронике являются органические полупроводники.
Параметры приборов, основанных на этом эффекте, значительно превышают соответствующие параметры приборов интегральной микроэлектроники.
Одним из перспективных направлений функциональной микроэлектроники является интегральная оптика, обеспечивающая создание сверхпроизводительных систем передачи и обработки оптической информации.
функциональная микроэлектроника предполагает принципиально новый подход, позволяющий реализовать определенную функцию аппаратуры без применения стандартных базовых элементов, основываясь непосредственно на физических явлениях в твердом теле. В этом случае локальному объекту твердого тела придаются такие свойства, которые требуются для выполнения данной функции, и промежуточный этап представления желаемой функции в виде эквивалентной электрической схемы не требуется. Функциональные микросхемы могут выполняться не только на основе полупроводников, но и на основе таких материалов, как сверхпроводники, сегнетоэлектрики, материалы с. фотопроводящими свойствами и др. Для переработки информации можно использовать явления, не связанные с электропроводностью (например, оптические и магнитные явления в диэлектриках, закономерности распространения ультразвука и т.д.).
Таким образом, функциональная микроэлектроника охватывает вопросы получения специальных сред с наперед заданными свойствами и создания различных электронных устройств методом физической интеграции, т.е. использования таких физических принципов и явлений, реализация которых позволяет получить приборы со сложным схемотехническим или системотехническим функциональным назначением.
Таким образом, функциональная микроэлектроника охватывает вопросы получения специальных сред с наперед заданными свойствами и создания различных электронных устройств методом физической интеграции, т.е. использования таких физических принципов и явлений, реализация которых позволяет получить приборы со сложным схемотехническим или системотехническим функциональным назначением.
