- •Принцип функционально-узлового проектирования электронных систем
- •Способы обеспечения качественных характеристик и технологичности функциональных узлов. Способы обеспечения точности и стабильности параметрв.
- •3. Ряды номиналов и схемы замещения стандартных функциональных рядов
- •7. Функциональная микроэлектроника, краткая характеристика и области применения устройств на ее базе.
- •8. Управляемые (зависимые) источники тока и напряжения, идеальный усилитель и его свойства.
- •Идеальный операционный усилитель
- •9. Временная и частотная фильтрация. Виды фильтров. Фильтры низких и высоких частотна пассивных р еактивных элементах.
- •Частотные фильтры характеризуются показателями:
- •Одноэлементные фильтры высоких и низких частот
- •П олосовые резонансные фильтры
- •10. Полупроводники и их свойства. Электронно-дырочный переход при отсутствии внешнего напряжения, диффузионный и дрейфовый токи, механизм образования запирающего слоя.
- •11. Технологии получения и свойства p-n перехода в полупроводнике, зонная теория p-n перехода.
- •12. Переход металл – полупроводник, его вольтамперная характеристика, способы улучшения линейности.
- •13. Полупроводниковые диоды. Принцип работы, вольтамперные характеристики, частотные свойства. Работа диода при больших токах, область безопасной работы (обр).
- •14. Биполярные транзисторы, схемы замещения, частотные сворйства, усилительные свойства, ключ на транзисторе, обр.
- •1 5. Принцип работы, структура и вольтамперные характеристики динисторов и тиристоров, их основные параметры, вах, обр. Запираемые (двухоперационные) тиристоры.
- •16. Униполярные транзисторы, их разновидности и схемы замещения, схемы включения, частотные свойства, усилительные свойства, усилитель и ключ на транзисторе, обр.
- •17. Принцип работы и вольтамперные характеристики бтиз – транзисторов.
- •18. Сит и бсит – транзисторы. Принцип работы, вольтамперные характеристики. Работа сит – транзистора в ключевом режиме, особенности схем включения, обр.
- •19. Основные схемы включения транзисторов и их характеристики.
- •20. Работа транзистора в ключевом режиме.
- •21. Схемы параллельного и последовательного включения диодов и транзисторов. Способы и схемы выравнивания токов и напряжений.
- •22. Специфика работы полупроводниковых диодов и транзисторов при больших токах. Работа полупроводниковых диодов и транзисторов в составе интегральных схем, эффект близости.
- •Типы диодов
- •Биполярные транзисторы
- •24. Однофазный однополупериодный однофазный выпрямитель. Основные расчетные соотношения характеристик при работе на r, l, c нагрузку, области применения.
- •27. Управляемые выпрямители, основные расчетные соотношения, способы управления.
- •28. Система управления выпрямителями. Вертикальное и горизонтальное управление. Системы импульсно-фазового управления (сифу), классификация, реализация сифу в аналоговом и цифровом виде.
- •Горизонтальный метод управления
- •Вертикальный метод управления
- •29. Сглаживающие фильтры. Основные характеристики и принципы работы.
- •3 2. Импульсные стабилизаторы напряжения и тока.
- •33. Регуляторы постоянного напряжения. Основные схемы и режимы их работы, краткая характеристика. Выбор коммутирующих полупроводниковых приборов.
- •34. Конверторы постоянного напряжения. Основные схемы и режим работы, краткая характеристика. Выбор коммутирующих полупроводниковых приборов.
- •35. Тиристорные и танзисторные преобразователи напряжения и частоты. Классификация и назначение.
- •36. Тиристорные пускатели асинхронных двигателей. Принцип работы, структурная схема, основные параметры. Комбинированные пускатели.
- •37. Тиристорные преобразователи частоты с непосредственной связью (нпч). Получение низкочастотного тока и напряжения.
- •Достоинства преобразователя частоты с непосредственной связью с естественной коммутацией
- •Основные недостатки частотных преобразователей с непосредственной связью
- •Частотные преобразователи с принудительной коммутацией и непосредственной связью с сетью
22. Специфика работы полупроводниковых диодов и транзисторов при больших токах. Работа полупроводниковых диодов и транзисторов в составе интегральных схем, эффект близости.
Диодами называют двухэлектродные элементы электрической цепи, обладающие односторонней проводимостью тока.
В полупроводниковых диодах односторонняя проводимость обусловливается применением полупроводниковой структуры, сочетающей в себе два слоя, один из которых обладает дырочной (р), а другой — электронной (n) электропроводностью. Принцип действия полупроводникового диода основывается на специфике процессов, протекающих на границе раздела р- и n-слоев, в так называемом, электронно-дырочном переходе (р-n-переходе).
Типы диодов
Промышленностью выпускаются германиевые и кремниевые диоды. Преимущества кремниевых диодов: малые обратные токи, возможность использования при более высоких температурах окружающей среды и больших обратных напряжениях, большие допустимые плотности прямого тока; преимущества германиевых диодов: малое падение напряжения при пропускании прямого тока.
По назначению полупроводниковые диоды подразделяют на выпрямительные диоды малой, средней и большой мощности, импульсные диоды и полупроводниковые стабилитроны.
Мощные (силовые) диоды. К данному типу относятся диоды на токи от 10 А и выше. Отечественная промышленность выпускает силовые диоды на токи 10, 16, 25, 40 и т. д. до 1000 А и обратные напряжения
рис. 1.14. Конструкция кремниевых выпрямительных диодов средней мощности Д202 — Д205 (а):
1 — внешний вывод (анод); 2 — трубка (штенгель); 3 — стеклянный изолятор; 4 — корпус; 5 —внутренний вывод анода; 6 — алюминий; 7 — кристалл кремния; 8— теплоотводящее основание; 9 — кристаллодержатель; 10 — внешний вывод (катод);
до 3500 В. Силовые диоды имеют градацию по частоте и охватывают частотный диапазон применения до десятков килогерц.
Мощные диоды изготовляют преимущественно из кремния. Пример возможной конструкции мощного диода показан на рис. 1.15.
Рассмотрим некоторые специфические особенности мощных диодов.
Работа при больших токах и высоких обратных напряжениях связана с выделением значительной мощности в p-n-переходе. В связи с этим здесь должны предусматриваться эффективные методы отвода теплоты. В установках с мощными диодами применяют воздушное и жидкостное охлаждение. При воздушном охлаждении отвод теплоты производится с помощью радиатора и проходящего вдоль его теплоотводящих ребер потока воздуха. При этом охлаждение может быть естественным, если отвод теплоты в окружающую среду определяется естественной конвекцией воздуха, или принудительным, если используется принудительный обдув корпуса прибора и его радиатора с помощью вентилятора.
Биполярные транзисторы
Транзистор, или полупроводниковый триод, являясь управляемым элементом, нашел широкое применение в схемах усиления, а также в импульсных схемах. Отсутствие накала, малые габариты и стоимость, высокая надежность — таковы его преимущества.
Б
иполярный
транзистор представляет собой трехслойную
полупроводниковую структуру с чередующимся
типом электропроводности слоев и
содержит два р-n-перехода.
В зависимости от чередования слоев
существуют транзисторы типов р-n-р
и
n-р-n
Принцип действия биполярного транзистора рассмотрим на примере структуры типа р-n-р (рис. 1.21, а). Сначала покажем распределение концентрации носителей заряда в слоях транзисторной структуры и разнести потенциалов, создаваемой объемными зарядами p-n-переходов, в отсутствие внешних напряжений (рис. 1.21,6, в).
В отсутствие внешних напряжений на границах раздела трех слоев образуются объемные заряды, создается внутреннее электрическое поле и между слоями действует внутренняя разность потенциалов. Потенциальный барьер в каждом из переходов устанавливается такой величины, чтобы обеспечивалось равновесие диффузионного и дрейфового потоков носителей заряда, движущихся через переходы в противоположных направлениях, т. е. равенство нулю протекающего через них тока.
Процессы в базовом слое определяются в основном поведением дырок, перешедших в базу через эмиттерный переход. Инжектируемые дырки, попадая в базовый слой, повышают концентрацию дырок в базе вблизи эмиттера. На границе с эмиттерным переходом создается концентрация дырок.
биполярный транзистор управляется током.
Существуют три способа включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК)- О способе включения с общей базой говорилось при рассмотрении принципа действия транзистора. Различие в способах включения зависит оттого, какой из выводов транзистора является общим для входной и выходной цепей. В схеме ОБ общей точкой входной и выходной цепей является база, в схеме ОЭ — эмиттер, в схеме ОК — коллектор.
23. Оптоэлектронные приборы, фотоэлектронные и излучающие приборы, светодиоды, полупроводниковые мазеры и лазеры, оптроны и оптические системы передачи информации. Волоконно-оптические линии связи (ВОЛС). Принцип действия. Специфика работы, область применения. Способы гальванической развязки сигналов и устройств с их помощью.
Оптоэлектронные приборы - приборы, которые чувствительны к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой
областях (оптический диапазон спектра), а также приборы, производящие или использующие такое излучение.
Оптический
диапазон - электромагнитные волны с
длиной от 1 нм до 1 мм, что соответствует
частотам 0.5·
- 5·
Гц. Видимому диапазону соответствуют
длины волн от 3.88 до 0.78 мкм. На практике
используются источники излучения
(излучатели), приемники излучения
(фотоприемники) и оптроны (оптопары).
Оптрон – прибор, в котором имеется и
источник и
приемник излучения, конструктивно объединенные и помещенные в один корпус. Источники излучения: светодиоды и лазеры. Приемники излучения: фоторезисторы, фотодиоды,
фототранзисторы и фототиристоры. Оптроны: светодиод-фотодиод, светодиод-ототранзистор, светодиод-фототиристор.
Фотоэлектронные приборы - электровакуумные или полупроводниковые приборы ,преобразующие электромагнитные сигналы оптического диапазона в электрические токи, напряжения или преобразующие изображения в невидимых (напр., ИК) лучах в видимые изображения. Ф. п. предназначены для преобразования, накопления, хранения, передачи и воспроизведения информации (включая информацию в виде изображения объекта). Действие Ф. п. основано на использовании фотоэффектов: внешнего (фотоэлектронной эмиссии), внутреннего (фотопроводимости) или вентильного. К Ф. п. относятся разл. фотоэлементы, фотоэлектронные умножители, фоторезисторы, фотодиоды, электронно-оптич. преобразователи, усилители яркости изображения, а также передающие электронно-лучевые трубки.
Как правило, все фотоэлектрические приборы - полупроводниковые. К полупроводниковым относятся вещества, занимающие по величине удельного электронного сопротивления (или проводимости) промежуточное положения между проводниками (метал) и диэлектриками. характерным признаком полупроводников, выделяющим их электропроводности от концентрации примесей и электрических воздействий (температуры, света и др.). Например, даже при небольшом повышении температуры проводимость полупроводников резко возрастает (около5% на 1°С).
Излучающие полупроводниковые приборы. Классификация фотоэлектрических приборов и основные определения Фотоэлектрическими называют приборы, в которых энергия оптического излучения преобразуется в электрическую. Оптическим является электромагнитное излучение с длинами волн от 5 до 106 нм. В зависимости от длины волн оптическое излучение подразделяется на ультрафиолетовое (5… 400нм), видимое (400… 760нм),и инфракрасное (760… 106 нм). Действие фотоэлектрических приборов основано на явлении фотоэлектрического эффекта, которым называется процесс полного или частичного освобождения заряженных частиц в веществе в результате поглощения фотонов. Различают внутренний и внешний фотоэффект.
Полупроводниковый лазер — твердотельный лазер, в котором в качестве рабочего вещества используется полупроводник. В таком лазере, в отличие от лазеров других типов (в том числе и других твердотельных), используются излучательные переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешенными энергетическими зонами или подзонами кристалла. В полупроводниковом лазере накачка осуществляется:
непосредственно электрическим током (прямая накачка);
электронным пучком;
электромагнитным излучением.
Волоконно-оптическая связь — вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем — волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования, пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования — незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно. В основе волоконно-оптической связи лежит явление полного внутреннего отражения электромагнитных волн на границе раздела диэлектриков с разными показателями преломления. Оптическое волокно состоит из двух элементов — сердцевины, являющейся непосредственным световодом, и оболочки. Показатель преломления сердцевины несколько больше показателя преломления оболочки, благодаря чему луч света, испытывая многократные переотражения на границе сердцевина-оболочка, распространяется в сердцевине, не покидая её.
Волоконно-оптическая связь находит всё более широкое применение во всех областях — от компьютеров и бортовых космических, самолётных и корабельных систем, до систем передачи информации на большие расстояния, например, в настоящее время успешно используется волоконно-оптическая линия связи Западная Европа — Япония, большая часть которой проходит по территории России. Кроме того, увеличивается суммарная протяжённость подводных волоконно-оптических линий связи между континентами.
высокоскоростной доступ в Интернет;
услуги телефонной связи;
услуги телевизионного приёма.
Стоимость использования волоконно-оптической технологии уменьшается, что делает данную услугу конкурентоспособной по сравнению с традиционными услугами.
