
- •Функции двух и трех переменных как функции точки
- •Геометрическое изображение функции двух переменных с помощью поверхностей и линий уровня.
- •Предел функции. Непрерывность в точке и в области.
- •Частные производные функции нескольких переменных, геометрический смысл частных производных функции двух переменных.
- •Полный дифференциал функции нескольких переменных.
- •3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
- •3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
- •Частные производные высших порядков.
- •Экстремум функции двух переменных. Необходимые условия экстремума.
- •Достаточные условия экстремума функции двух переменных.
- •Наибольшее и наименьшее значение функций в замкнутой ограниченной области.
- •Условный экстремум функции двух переменных. Экономический смысл множителей Лангранжа.
- •Первообразная. Неопределенный интеграл.
- •Некоторые дополнительные интегралы
- •Основные свойства неопределенного интеграла.
- •Метод замены переменной в неопределенном интеграле.
- •Метод интегрирования по частям.
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •Интегралы от некоторых функций, содержащих трехчлен.
- •Интегрирование рациональных дробей.
- •Интегрирование иррациональных функций.
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •2) Случай второй
- •Интегрирование тригонометрических функций.
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •См. Конспект
- •См. Конспект
- •Определение определенного интеграла. Основные свойства.
- •Определение
- •Обозначения
- •Свойства
- •Геометрический смысл
- •Теорема об интеграле с переменным верхним пределом.
- •Формула Ньютона-Лейбница.
- •Замена переменной в определенном интеграле.
- •Интегрирование по частям при вычислении определенного интеграла. Метод интегрирования по частям в определенном интеграле
- •Вычисление площадей плоских фигур в прямоугольных координатах.
- •Вычисление площади плоских фигур в полярных координатах.
- •Площадь криволинейного сектора - вывод формулы.
- •Примеры вычисления площади криволинейного сектора.
- •Вычисление длины дуги плоской кривой.
- •Вычисление объема тела по площадям параллельных сечений.
- •Объем тела вращения. Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Интегралы с бесконечными пределами интегрирования.
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственные интегралы от неограниченных функций
- •Интегралы от неограниченных функций.
- •Признаки сходимости несобственных интегралов.
- •Обыкновенные дифференциальные уравнения (основные понятия).
- •Дифференциальные уравнения первого порядка. Задача Коши. Теорема существования и единственности решения задачи Коши (формулировка).
- •Дифференциальные уравнения с разделяющимися переменными.
- •Дифференциальные уравнения с однородными функциями.
- •Как решить однородное дифференциальное уравнение?
- •Линейные дифференциальные уравнения первого порядка и уравнения Бернулли.
- •Дифференциальные уравнения высших порядков, допускающие понижение порядка.
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Линейные однородные уравнения n-го порядка, свойства их решений.
- •Теорема о структуре общего решения линейного однородного дифференциального уравнения.
- •Теорема о структуре общего решения линейного неоднородного дифференциального уравнения.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами и правой частью специального вида.
- •Общее решение неоднородного дифференциального уравнения:
3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
Шаг второй. Находим частные производные второго порядка. Их четыре.
Обозначения: или – вторая производная по «икс» или – вторая производная по «игрек» или – смешанная производная «икс по игрек» или – смешанная производная «игрек по икс»
В понятии второй производной нет ничего сложного. Говоря простым языком, вторая производная – это производная от первой производной.
Для наглядности я перепишу уже найденные частные производные первого порядка:
Сначала найдем смешанные производные:
Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек».
Аналогично:
Для практических примеров справедливо следующее равенство:
Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.
Находим вторую производную по «икс». Никаких изобретений, берем и дифференцируем её по «икс» еще раз:
Аналогично:
Следует отметить, что при нахождении , нужно проявить повышенное внимание, так как никаких чудесных равенств для проверки не существует.
Пример 2
Найти частные производные первого и второго порядка функции
Это пример для самостоятельного решения (ответ в конце урока). Если возникли трудности с дифференцированием корней, рекомендую ознакомиться уроком Как найти производную?
При определенном опыте частные производные из примеров №№1,2 будут решаться Вами устно.
Переходим к более сложным примерам.
Пример 3
Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .
Решение: Находим частные производные первого порядка:
Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.
Дальнейшие комментарии:
(1) Выносим все константы за знак производной. В данном случае и , а, значит, и их произведение считается постоянным числом.
(2) Не забываем, как правильно дифференцировать корни.
(1) Выносим все константы за знак производной, в данной случае константой является .
(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .
(3) Не забываем, что – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .
Теперь находим смешанные производные второго порядка:
, значит, все вычисления выполнены верно.
Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.
Полный дифференциал первого порядка функции двух переменных имеет вид:
В данном случае:
То
есть, в формулу нужно тупо просто
подставить уже найденные частные
производные первого порядка. Значки
дифференциалов
и
в
этой и похожих ситуациях по возможности
лучше записывать в числителях:
Пример 4
Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .
Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.
Рассмотрим серию примеров, включающих в себя сложные функции.
Пример 5
Найти частные производные первого порядка функции . Записать полный дифференциал .
Решение:
(1) Применяем правило дифференцирования сложной функции . С урокаПроизводная сложной функции следует помнить очень важный момент: когда мы по таблице превращаем синус (внешнюю функцию) в косинус, то вложение (внутренняя функция) у нас не меняется.
(2) Здесь используем свойство корней: , выносим константу за знак производной, а корень представляем в нужном для дифференцирования виде.
Аналогично:
Запишем полный дифференциал первого порядка:
Пример 6
Найти частные производные первого порядка функции . Записать полный дифференциал .
Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое
Довольно часто все вышерассмотренные правила применяются в комбинации.
Пример 7
Найти частные производные первого порядка функции .
(1) Используем правило дифференцирования суммы
(2) Первое слагаемое в данном случае считается константой, поскольку в выражении нет ничего, зависящего от «икс» – только «игреки». Знаете, всегда приятно, когда дробь удается превратить в ноль). Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в этом смысле ничего бы не изменилось, если бы вместо была дана функция – важно, что здесь произведение двух функций, КАЖДАЯ из которых зависит от «икс», а поэтому, нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.
(1) В первом слагаемом и в числителе и в знаменателе содержится «игрек», следовательно, нужно использовать правило дифференцирования частного: . Второе слагаемое зависит ТОЛЬКО от «икс», значит, считается константой и превращается в ноль. Для третьего слагаемого используем правило дифференцирования сложной функции.
Пример 8
Найти частные производные первого порядка функции .
Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.
Ну вот почти и всё. Напоследок не могу не обрадовать любителей математики еще одним примером. Дело даже не в любителях, у всех разный уровень математической подготовки – встречаются люди (и не так уж редко), которые любят потягаться с заданиями посложнее. Хотя, последний на данном уроке пример не столько сложный, сколько громоздкий с точки зрения вычислений.
Пример 9
Дана функция двух переменных . Найти все частные производные первого и второго порядков.
Это пример для самостоятельного решения. Полное решение и образец оформления где-то рядом.
Желаю успехов!
Ответы:
Пример 2: , , , ,
Пример 4: Ссылка для просмотра или скачивания ниже.
Пример 6: , ,