
- •Функции двух и трех переменных как функции точки
- •Геометрическое изображение функции двух переменных с помощью поверхностей и линий уровня.
- •Предел функции. Непрерывность в точке и в области.
- •Частные производные функции нескольких переменных, геометрический смысл частных производных функции двух переменных.
- •Полный дифференциал функции нескольких переменных.
- •3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
- •3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
- •Частные производные высших порядков.
- •Экстремум функции двух переменных. Необходимые условия экстремума.
- •Достаточные условия экстремума функции двух переменных.
- •Наибольшее и наименьшее значение функций в замкнутой ограниченной области.
- •Условный экстремум функции двух переменных. Экономический смысл множителей Лангранжа.
- •Первообразная. Неопределенный интеграл.
- •Некоторые дополнительные интегралы
- •Основные свойства неопределенного интеграла.
- •Метод замены переменной в неопределенном интеграле.
- •Метод интегрирования по частям.
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •Интегралы от некоторых функций, содержащих трехчлен.
- •Интегрирование рациональных дробей.
- •Интегрирование иррациональных функций.
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •2) Случай второй
- •Интегрирование тригонометрических функций.
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •См. Конспект
- •См. Конспект
- •Определение определенного интеграла. Основные свойства.
- •Определение
- •Обозначения
- •Свойства
- •Геометрический смысл
- •Теорема об интеграле с переменным верхним пределом.
- •Формула Ньютона-Лейбница.
- •Замена переменной в определенном интеграле.
- •Интегрирование по частям при вычислении определенного интеграла. Метод интегрирования по частям в определенном интеграле
- •Вычисление площадей плоских фигур в прямоугольных координатах.
- •Вычисление площади плоских фигур в полярных координатах.
- •Площадь криволинейного сектора - вывод формулы.
- •Примеры вычисления площади криволинейного сектора.
- •Вычисление длины дуги плоской кривой.
- •Вычисление объема тела по площадям параллельных сечений.
- •Объем тела вращения. Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Интегралы с бесконечными пределами интегрирования.
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственные интегралы от неограниченных функций
- •Интегралы от неограниченных функций.
- •Признаки сходимости несобственных интегралов.
- •Обыкновенные дифференциальные уравнения (основные понятия).
- •Дифференциальные уравнения первого порядка. Задача Коши. Теорема существования и единственности решения задачи Коши (формулировка).
- •Дифференциальные уравнения с разделяющимися переменными.
- •Дифференциальные уравнения с однородными функциями.
- •Как решить однородное дифференциальное уравнение?
- •Линейные дифференциальные уравнения первого порядка и уравнения Бернулли.
- •Дифференциальные уравнения высших порядков, допускающие понижение порядка.
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Линейные однородные уравнения n-го порядка, свойства их решений.
- •Теорема о структуре общего решения линейного однородного дифференциального уравнения.
- •Теорема о структуре общего решения линейного неоднородного дифференциального уравнения.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами и правой частью специального вида.
- •Общее решение неоднородного дифференциального уравнения:
Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
В теории и практике различают два типа таких уравнений – однородное уравнение инеоднородное уравнение.
Однородное
ДУ второго порядка с постоянными
коэффициентами имеет
следующий вид:
,
где
и
–
константы (числа), а в правой части
– строго ноль.
Неоднородное
ДУ второго порядка с постоянными
коэффициентами имеет
вид:
,
где
и
–
константы, а
–
функция, зависящая только
от «икс». В
простейшем случае функция
может
быть числом, отличным
от нуля.
Какая мысль приходит в голову после беглого взгляда? Неоднородное уравнение кажется сложнее. На этот раз первое впечатление не подводит!
Кроме
того, чтобы научиться решать неоднородные
уравнения необходимо уметь
решать однородные уравнения. По этой
причине сначала рассмотрим алгоритм
решения линейного однородного уравнения
второго порядка:
Для
того чтобы решить данное ДУ, нужно
составить так называемое характеристическое
уравнение:
По
какому принципу составлено характеристическое
уравнение, отчётливо видно:
вместо
второй производной записываем
;
вместо
первой производной записываем просто
«лямбду»;
вместо функции
ничего
не записываем.
– это обычное квадратное уравнение, которое предстоит решить.
Существуют три варианта развития событий. Они доказаны в курсе математического анализа, и на практике мы будет использовать готовые формулы.
Характеристическое уравнение имеет два различных действительных корня
Если
характеристическое уравнение
имеет
два различных действительных
корня
,
(т.е.,
если дискриминант
),
то общее решение однородного уравнения
выглядит так:
,
где
–
константы.
В
случае если один из корней равен нулю,
решение очевидным образом упрощается;
пусть, например,
,
тогда общее решение:
.
Пример 1
Решить
дифференциальное уравнение
Решение: составим
и решим характеристическое уравнение:
,
Получены
два различных действительных корня (от
греха подальше лучше сразу же выполнить
проверку, подставив корни в уравнение).
Всё,
что осталось сделать – записать ответ,
руководствуясь формулой
Ответ: общее
решение:
Не
будет ошибкой, если записать общее
решение наоборот:
,
но хорошим стилем считается располагать
коэффициенты по возрастанию, сначала
–2, потом 1.
Придавая константам различные значения, можно получить бесконечно много частных решений.
Теперь неплохо бы освежить базовые понятия урока Дифференциальные уравнения. Примеры решений. А что значит вообще решить дифференциальное уравнение?Решить дифференциальное уравнение – это значит найти множество решений, которое удовлетворяет данному уравнению. Такое множество решений, напоминаю, называется общим интегралом или общим решением дифференциального уравнения.
Таким
образом, в рассмотренном примере
найденное общее решение
должно
удовлетворять исходному уравнению
.
Точно так же, как и диффура 1-го порядка,
в большинстве случаев легко выполнить
проверку:
Берем
наш ответ
и
находим производную:
Находим
вторую производную:
Подставляем
,
и
в
левую часть уравнения
:
Получена правая часть исходного уравнения (ноль), значит, общее решение найдено правильно (оно, как проверено, удовлетворяет уравнению ).
Пример 2
Найти общее решение дифференциального уравнения, выполнить проверку
Это пример для самостоятельного решения, полное решение и ответ в конце урока.
На самом деле проверка таких простейших примеров практически никогда не выполняется, но, дело в том, что навык и сама техника проверки очень пригодятся, когда вы будете решать более сложные неоднородные уравнения второго порядка. Поэтому было целесообразно сразу же ознакомить вас с алгоритмом.