
- •Федеральное агентство по образованию
- •Определение функционального анализа. Предмет функционального анализа. Определение функционального анализа.
- •Предмет функционального анализа.
- •Линейные пространства. Аксиомы. Определение поля. Линейные пространства.
- •Следствия аксиом линейного пространства.
- •Операторы. Линейные операторы. Матрица оператора. Базис. Линейные операторы.
- •Матрица оператора.
- •Базис линейного пространства.
- •Собственные числа и собственные векторы. Квадратичные формы. Матрица квадратичной формы. Привести пример. Собственные числа и собственные векторы.
- •Квадратичные формы.
- •Матрица квадратичной формы.
- •Примеры.
- •Евклидовы пространства. Определение.
- •Свойства скалярного произведения.
- •Неравенство Коши-Буняковского.
- •Понятие меры. Измеримые функции. Простые функции. Ортогональные функции. Мера Лебега. Свойства меры Лебега. Интеграл Лебега. Понятие меры.
- •Измеримые функции.
- •Мера Лебега. Внешняя мера.
- •Интеграл Лебега.
- •Определение интеграла Лебега.
- •Нормированные пространства. Норма. Примеры. Нормированное пространство.
- •Определение.
- •Топологическая структура.
- •Нормированные пространства как фактор-пространства полунормированных пространств.
- •Конечные произведения пространств.
- •Метрические пространства. Метрика. Примеры. Сжатые отображения. Метрическое пространство.
- •Сжатые отображения.
- •Примеры.
- •Банаховы и гильбертовы пространства. Банахово пространство.
- •Примеры.
- •Гильбертово пространство.
- •Функционалы. Функциональные пространства. Функционал.
- •Функционал в линейном пространстве
- •Линейные функционалы.
- •Ортогональный и ортонормированный базис. Процесс ортогонализации. Сопряженные векторы в евклидовом пространстве. Ортогональный базис.
- •Ортонормированный базис.
- •Процесс Грама ― Шмидта
Примеры.
Дискретная метрика:
, если
, и
во всех остальных случаях.
Вещественные числа с функцией расстояния
и евклидово пространство являются полными метрическими пространствами.
Пусть
— пространство непрерывных и ограниченных отображений из топологического пространства в метрическое пространство
. Расстояние между двумя отображениями
и
из этого пространства определяется как
Сходимость отображений по этой метрике равнозначна их равномерной сходимости на всём пространстве .
В частном случае, когда
—
компактное пространство,
—
числовая прямая, получается пространство
всех
непрерывных функций на пространстве X
с метрикой равномерной сходимости.
Пусть
,
,
— пространства функций на отрезке , соответственно интегрируемых по Лебегу, интегрируемых по Риману, и непрерывных. В них расстояние можно определить по формуле:
Для того, чтобы эта функция стала метрикой, в первых двух пространствах необходимо отождествить функции, отличающиеся на множестве меры 0. В противном случае эта функция будет всего лишь полуметрикой. (В пространстве функций, непрерывных на отрезке, функции, отличающиеся на множестве меры 0, и так совпадают.)
В пространстве k раз непрерывно дифференцируемых функций
метрика вводится по формуле:
где
—
метрика равномерной сходимости на
(см.
выше).
Любое нормированное пространство можно превратить в метрическое, определив функцию расстояния
.
Конечномерные пространства такого типа называются пространством Минковского;
в случае если размерность равна двум то плоскостью Минковского.
Любое связное риманово многообразие
можно превратить в метрическое пространство, определив расстояние как точную нижнюю грань длин путей, соединяющих пару точек.
Множество вершин любого связного графа можно превратить в метрическое пространство, определив расстояние как минимальное число рёбер в пути, соединяющем вершины. Более общо: если каждому рёбру графа приписать положительное число (длину ребра), расстояние между вершинами можно определить как минимальную сумму длин рёбер вдоль любых путей из одной вершины в другую.
Частным случаем предыдущего примера является так называемая французская железнодорожная метрика — пример, который нередко приводят в качестве примера метрики, не порождённой нормой.
Множество компактных подмножеств
любого метрического пространства можно превратить в метрическое пространство, определив расстояние с помощью так называемой метрики Хаусдорфа. В этой метрике два подмножества близки друг к другу, если для любой точки одного множества можно найти близкую точку в другом подмножестве. Вот точное определение:
Множество всех компактных метрических пространств (с точностью до изометрии) можно превратить в метрическое пространство, определив расстояние с помощью так называемой метрики Громова — Хаусдорфа.
Банаховы и гильбертовы пространства. Банахово пространство.
Ба́нахово пространство — нормированное векторное пространство, полное по метрике, порождённой нормой. Основной объект изучения функционального анализа. Названо по имени польского математика Стефана Банаха.