
- •Федеральное агентство по образованию
- •Определение функционального анализа. Предмет функционального анализа. Определение функционального анализа.
- •Предмет функционального анализа.
- •Линейные пространства. Аксиомы. Определение поля. Линейные пространства.
- •Следствия аксиом линейного пространства.
- •Операторы. Линейные операторы. Матрица оператора. Базис. Линейные операторы.
- •Матрица оператора.
- •Базис линейного пространства.
- •Собственные числа и собственные векторы. Квадратичные формы. Матрица квадратичной формы. Привести пример. Собственные числа и собственные векторы.
- •Квадратичные формы.
- •Матрица квадратичной формы.
- •Примеры.
- •Евклидовы пространства. Определение.
- •Свойства скалярного произведения.
- •Неравенство Коши-Буняковского.
- •Понятие меры. Измеримые функции. Простые функции. Ортогональные функции. Мера Лебега. Свойства меры Лебега. Интеграл Лебега. Понятие меры.
- •Измеримые функции.
- •Мера Лебега. Внешняя мера.
- •Интеграл Лебега.
- •Определение интеграла Лебега.
- •Нормированные пространства. Норма. Примеры. Нормированное пространство.
- •Определение.
- •Топологическая структура.
- •Нормированные пространства как фактор-пространства полунормированных пространств.
- •Конечные произведения пространств.
- •Метрические пространства. Метрика. Примеры. Сжатые отображения. Метрическое пространство.
- •Сжатые отображения.
- •Примеры.
- •Банаховы и гильбертовы пространства. Банахово пространство.
- •Примеры.
- •Гильбертово пространство.
- •Функционалы. Функциональные пространства. Функционал.
- •Функционал в линейном пространстве
- •Линейные функционалы.
- •Ортогональный и ортонормированный базис. Процесс ортогонализации. Сопряженные векторы в евклидовом пространстве. Ортогональный базис.
- •Ортонормированный базис.
- •Процесс Грама ― Шмидта
Нормированные пространства как фактор-пространства полунормированных пространств.
Определения многих нормированных пространств (например, банахова пространства) включают в себя полунорму, определённую в векторном пространстве, а затем нормированное пространство определяется как факторпространство с помощью подпространства элементов, чья полунорма равна нулю. Например, в случае пространств Lp, функция, определяемая как
является полунормой в векторном пространстве всех функций, интеграл Лебега от которых (справа) определён и конечен. Однако полунорма равна нулю для всех функций, носитель которых имеет нулевую меру Лебега. Эти функции образуют подпространство, которое мы «вычёркиваем», делая их эквивалентными нулевой функции.
Конечные произведения пространств.
Для данных
полунормированных
пространств
с
полунормами
мы
можем определить произведение пространств
как
с векторным сложением, определённым как
и скалярным умножением, определённым как
Определим новую функцию
как
которая будет полунормой в . Функция будет нормой тогда и только тогда, когда все являются нормами.
Метрические пространства. Метрика. Примеры. Сжатые отображения. Метрическое пространство.
Метри́ческим простра́нством называется множество, в котором определено расстояние между любой парой элементов.
Метрическое пространство есть пара
,
где
—
множество (подлежащее множество
метрического пространства, множество
точек метрического пространства),
а
—
числовая функция (метрика пространства),
которая определена на декартовом
произведении
и
принимает значения в множестве
вещественных чисел — такая, что для
точек
(аксиома тождества).
(аксиома симметрии).
(аксиома треугольника или неравенство треугольника).
Прим.: Из
аксиом следует неотрицательность
функции расстояния, поскольку
Сжатые отображения.
Сжатые отображения одно из основных положений теории метрических пространств о существовании и единственности неподвижной точки множества при некотором специальном («сжимающем») отображении его в себя. С. о. п. применяют главным образом в теории дифференциальных и интегральных уравнений.
Произвольное отображение А метрического пространства М в себя, которое каждой точке х из М сопоставляет некоторую точку у = Ax из М, порождает в пространстве М уравнение
Ax = х. (*)
Действие отображения А на точку х можно интерпретировать как перемещение её в точку у = Ax. Точка х называется неподвижной точкой отображения А, если выполняется равенство (*). Т. о. вопрос о разрешимости уравнения (*) является вопросом о нахождении неподвижных точек отображения А.
Отображение А метрического пространства М в себя называется сжатым, если существует такое положительное число a < 1, что для любых точек х и у из М выполняется неравенство
d (Ax, Ау) £ ad (х, у),
где символ d (u, u) означает расстояние между точками u и u метрического пространства М.
С. о. п. утверждает, что каждое сжатое отображение полного метрического пространства в себя имеет, и притом только одну, неподвижную точку. Кроме того, для любой начальной точки x0 из М последовательность {xn}, определяемая рекуррентными соотношениями
xn = Axn-1, n = 1,2,...,
имеет своим пределом неподвижную точку х отображения А. При этом справедлива следующая оценка погрешности:
.
С. о. п. позволяет единым методом доказывать важные теоремы о существовании и единственности решений дифференциальных, интегральных и др. уравнений. В условиях применимости С. о. п. решение может быть с наперёд заданной точностью вычислено последовательных приближений методом.
С помощью определённого выбора полного метрического пространства М и построения отображения А эти задачи сводят предварительно к уравнению (*), а затем находят условия, при которых отображение А оказывается сжатым.