Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат Функциональный анализ.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
283.41 Кб
Скачать

Собственные числа и собственные векторы. Квадратичные формы. Матрица квадратичной формы. Привести пример. Собственные числа и собственные векторы.

Рассмотрим линейный оператор A, действующий в линейном пространстве X: y = A(x), ∀xX, yX.

Число λ называется собственным значением оператора A, если существует такой ненулевой вектор x, что справедливо равенство A(x) = λ·x. Любой ненулевой вектор x0, удовлетворяющий этому уравнению, называется собственным вектором оператора A, отвечающим собственному значению λ.

A(x) = λ·x, x0, xX.

Пусть A квадратная матрица. Число λ называется собственным значением матрицы A, если существует такой ненулевой вектор x, что справедливо равенство A·x = λ·x. Любой ненулевой вектор x0, удовлетворяющий этому уравнению, называется собственным вектором матрицы A, отвечающим собственному значению λ.

A·x = λ·x, x0.

Квадратичные формы.

Пусть числовая функция φ(x, y) — билинейная форма в пространстве L.

Числовая функция k(x) = φ(x, x) называется квадратичной формой в пространстве L.

Какова бы ни была квадратичная форма, существует единственная симметричная билинейная форма, из которой эта квадратичная форма может быть получена. Такая билинейная форма по отношению к квадратичной форме называется полярной билинейной формой. Полярная билинейная форма может быть вычислена по формуле :

Матрица квадратичной формы.

Пусть e1, ..., en — базис в L. И пусть для вектора x из L задано разложение x = x1·e1+x2·e2+ ...+ xn· en. Тогда для квадратичной формы k(x) справедливо представление

Здесь φ(ei , ej ) — значение полярной для k(x) билинейной формы φ(x , y).

Матрица A = {aij} называется матрицей квадратичной формы. Определённая таким образом матрица квадратичной формы является симметричной матрицей.

Примеры.

  1. Пусть φ(x , y) = (x, y) для ∀xE, yE билинейная форма в пространстве E. Здесь (x, y) − скалярное произведение в пространстве E. Тогда числовая функция k(x) = φ(x ,x) = (x, x) — квадратичная форма в пространстве E. Поскольку φ(x , y) = (x, y) — симметричная билинейная форма, то она является полярной билинейной формой для квадратичной формы k(x) = (x, x).

  1. Пусть k(x) = x12 + x22 квадратичная форма в пространстве R2.

Пусть e1= (1, 0), e2= (0, 1) — базис в R2. Вычислим матрицу A квадратичной формы.

Поскольку симметричная билинейная форма φ(x , y) = (x, y) — полярная для квадратичной формы k(x) = φ(x , x ) то матрица A квадратичной формы совпадает с матрицей Φ билинейной формы φ(x , y):

Проверим. Для этого подставим матрицу A в матричное представление квадратичной формы k(x)=xT·A·x:

Матрица квадратичной формы вычислена верно.

Евклидовы пространства. Определение.

 

Если каждой паре векторов x, y линейного пространства L поставлено в соответствие действительное число (x, y), так, что для любых x, y и z из L и любого действительного числа α справедливы следующие аксиомы:

(x, y) = (y, x),

(α·x, y) = α·(x, y),

(x + y, z) =(x, z) + (y, z),

(x, x)> 0 при x ≠ 0, (0, 0) = 0,

то в пространстве L определено скалярное произведение (x, y).

Если в линейном пространстве определено скалярное произведение, то такое пространство называется евклидовым пространством.

Евклидовы пространства E и E' называются евклидово изоморфными, если они изоморфны как линейные пространства и если

x E, y E, x ←→ x' E', y ←→ y' E', то (x, y) = (x', y').