Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат Функциональный анализ.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
283.41 Кб
Скачать

Функционал в линейном пространстве

Позднее от понятия традиционного функционала отделилось понятие функционала в линейном пространстве, как функции, отображающей элементы линейного пространства в его пространство скаляров. Зачастую (например, когда пространство функций является линейным пространством) эти две разновидности понятия «функционал» совпадают, в то же время они не тождественны и не поглощают друг друга.

Особенно важной разновидностью функционалов являются линейные функционалы.

Линейные функционалы.

Линейный функционал — функционал, обладающий свойством линейности по своему аргументу:

где  — линейный функционал, и  — функции из его области определения,  — число (константа).

Иными словами, это линейное отображение из (некоторого) пространства функций во множество чисел — чаще всего подразумеваемых вещественными, или, еще иначе, линейный оператор, действующий из (некоторого) пространства функций в (иногда в ).

Линейные функционалы играют особую роль в функциональном анализе.

  • Как и вообще термин 'функционал', термин 'линейный функционал' употребляется и вообще для аргументов из векторных пространств — в смысле линейного отображения из какого-то векторного пространства в его пространство скаляров, то есть — в этом употреблении — его аргументом может быть не обязательно функция.

  • Линейный функционал является аналогом оператора проецирования для бесконечномерных пространств (в частности, для пространств функций), а также применяется как обобщающий термин, покрывающий равно случаи конечномерных и бесконечномерных пространств.

  • Одним из важнейших примеров линейного функционала служит скалярное произведение с фиксированной функцией (элементом пространства):

(может быть также использовано интегрирование с весовой функцией).

  • Такие линейный функционалы, представляющие скалярное произведение с каждой из базисных функций полного набора, дают прямое преобразование Фурье.

Ортогональный и ортонормированный базис. Процесс ортогонализации. Сопряженные векторы в евклидовом пространстве. Ортогональный базис.

Ортогональный (ортонормированный) базис — ортогональная (ортонормированная) система элементов линейного пространства со скалярным произведением, обладающая свойством полноты.

Ортогональный базис — базис, составленный из попарно ортогональных векторов.

Ортонормированный базис в 3-мерном евклидовом пространстве

Ортонормированный базис удовлетворяет еще и условию единичности нормы всех его элементов. То есть это ортогональный базис с нормированными элементами.

Последнее удобно записывается при помощи символа Кронекера:

то есть скалярное произведение каждой пары базисных векторов равно нулю, когда они не совпадают ( ), и равно единице при совпадающем индексе, то есть когда берется скалярное произведение любого базисного вектора с самим собой.

Очень многое записывается в ортогональном базисе гораздо проще, чем в произвольном, поэтому очень часто стараются использовать именно такие базисы, если только это возможно или использование какого-то специального неортогонального базиса не дает особых специальных удобств. Или если не отказываются от него в пользу базиса общего вида из соображений общности.

Ортонормированный базис является самодуальным (дуальный ему базис совпадает с ним самим). Поэтому в нём можно не делать различия между верхними и нижними индексами, и пользоваться, скажем, только нижними (как обычно и принято, если конечно при этом используются только ортонормированные базисы).

Линейная независимость следует из ортогональности, то есть достигается для ортогональной системы векторов автоматически.

Коэффициенты в разложении вектора по ортогональному базису:

можно найти так:

.

Полнота ортонормированной системы векторов эквивалентна равенству Парсеваля: для любого вектора квадрат нормы вектора равен сумме квадратов коэффициентов его разложения по базису: